""" plotVEMLTracking.py This function plots the tracking results for the given channel list. Irene PĂ©rez Riega, 2023. iperrie@inta.es plotVEMLTracking(channelNr, trackResults, settings) Args: channelList - list of channels to be plotted. trackResults - tracking results from the tracking function. settings - receiver settings. Modifiable in the file: fig_path - Path where plots will be save ----------------------------------------------------------------------------- GNSS-SDR is a Global Navigation Satellite System software-defined receiver. This file is part of GNSS-SDR. Copyright (C) 2022 (see AUTHORS file for a list of contributors) SPDX-License-Identifier: GPL-3.0-or-later ----------------------------------------------------------------------------- """ import matplotlib.pyplot as plt import numpy as np import os def plotVEMLTracking(channelNr, trackResults, settings): # ---------- CHANGE HERE: fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/VEMLTracking' if not os.path.exists(fig_path): os.makedirs(fig_path) # Protection - if the list contains incorrect channel numbers if channelNr in list(range(1,settings["numberOfChannels"]+1)): plt.figure(figsize=(1920 / 120, 1080 / 120)) plt.clf() plt.gcf().canvas.set_window_title( f'Channel {channelNr} (PRN ' f'{trackResults[channelNr-1]["PRN"][0]}) results') plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, hspace=0.4, wspace=0.4) # Extract timeAxis and time_label if 'prn_start_time_s' in trackResults[channelNr-1]: timeAxis = trackResults[channelNr-1]['prn_start_time_s'] time_label = 'RX Time (s)' else: timeAxis = np.arange(1, len(trackResults[channelNr-1]['PRN']) + 1) time_label = 'Epoch' len_dataI = len (trackResults[channelNr-1]["data_I"]) len_dataQ = len (trackResults[channelNr-1]["data_Q"]) if len_dataI < len_dataQ: dif = len_dataQ - len_dataI trackResults[channelNr-1]["data_I"] = np.pad( trackResults[channelNr-1]["data_I"], pad_width=(0,dif), mode="constant", constant_values=0) elif len_dataQ < len_dataI: dif = len_dataI - len_dataQ trackResults[channelNr-1]["data_Q"] = np.pad( trackResults[channelNr-1]["data_Q"], pad_width=(0,dif), mode="constant", constant_values=0 ) # Discrete-Time Scatter Plot plt.subplot(3, 3, 1) plt.plot(trackResults[channelNr-1]['data_I'], trackResults[channelNr-1]['data_Q'], marker='.', markersize=1, linestyle=' ') plt.grid() plt.axis('equal') plt.title('Discrete-Time Scatter Plot', fontweight='bold') plt.xlabel('I prompt') plt.ylabel('Q prompt') # Nav bits plt.subplot(3, 3, (2, 3)) plt.plot(timeAxis, trackResults[channelNr-1]['data_I'], linewidth=1) plt.grid() plt.title('Bits of the navigation message', fontweight='bold') plt.xlabel(time_label) plt.axis('tight') # Raw PLL discriminator unfiltered plt.subplot(3, 3, 4) plt.plot(timeAxis, trackResults[channelNr-1]['pllDiscr'], color='r', linewidth=1) plt.grid() plt.axis('tight') plt.xlabel(time_label) plt.ylabel('Amplitude') plt.title('Raw PLL discriminator', fontweight='bold') # Correlation results plt.subplot(3, 3, (5, 6)) corr_data = [ np.sqrt(trackResults[channelNr-1]['I_VE'] ** 2 + trackResults[channelNr-1]['Q_VE'] ** 2), np.sqrt(trackResults[channelNr-1]['I_E'] ** 2 + trackResults[channelNr-1]['Q_E'] ** 2), np.sqrt(trackResults[channelNr-1]['I_P'] ** 2 + trackResults[channelNr-1]['Q_P'] ** 2), np.sqrt(trackResults[channelNr-1]['I_L'] ** 2 + trackResults[channelNr-1]['Q_L'] ** 2), np.sqrt(trackResults[channelNr-1]['I_VL'] ** 2 + trackResults[channelNr-1]['Q_VL'] ** 2) ] line = [] colors = ['b','#FF6600','#FFD700','purple','g'] for i, data in enumerate(corr_data): line.append(plt.plot(timeAxis, data, label=f'Data {i+1}', color=colors[i], marker='*', linestyle=' ', linewidth=1)) plt.grid() plt.title('Correlation results',fontweight='bold') plt.xlabel(time_label) plt.axis('tight') plt.legend([r'$\sqrt{I_{VE}^2 + Q_{VE}^2}$', r'$\sqrt{I_{E}^2 + Q_{E}^2}$', r'$\sqrt{I_{P}^2 + Q_{P}^2}$', r'$\sqrt{I_{L}^2 + Q_{L}^2}$', r'$\sqrt{I_{VL}^2 + Q_{VL}^2}$'], loc='best') # Filtered PLL discriminator plt.subplot(3, 3, 7) plt.plot(timeAxis, trackResults[channelNr-1]['pllDiscrFilt'], 'b', linewidth=1) plt.grid() plt.axis('tight') plt.xlabel(time_label) plt.ylabel('Amplitude') plt.title('Filtered PLL discriminator', fontweight='bold') # Raw DLL discriminator unfiltered plt.subplot(3, 3, 8) plt.plot(timeAxis, trackResults[channelNr-1]['dllDiscr'], 'r', linewidth=1) plt.grid() plt.axis('tight') plt.xlabel(time_label) plt.ylabel('Amplitude') plt.title('Raw DLL discriminator',fontweight='bold') # Filtered DLL discriminator plt.subplot(3, 3, 9) plt.plot(timeAxis, trackResults[channelNr-1]['dllDiscrFilt'], 'b', linewidth=1) plt.grid() plt.axis('tight') plt.xlabel(time_label) plt.ylabel('Amplitude') plt.title('Filtered DLL discriminator',fontweight='bold') plt.savefig(os.path.join(fig_path, f'Ch{channelNr}_PRN' f'{trackResults[channelNr-1]["PRN"][0]}' f'_results')) plt.show()