/*! * \file galileo_e5a_noncoherent_iq_acquisition_caf_cc.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for * Galileo E5a data and pilot Signals * \author Marc Sales, 2014. marcsales92(at)gmail.com * \based on work from: * * * ----------------------------------------------------------------------------- * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "galileo_e5a_noncoherent_iq_acquisition_caf_cc.h" #include "MATH_CONSTANTS.h" #include "gnss_sdr_make_unique.h" #include #include #include #include #include #include #include galileo_e5a_noncoherentIQ_acquisition_caf_cc_sptr galileo_e5a_noncoherentIQ_make_acquisition_caf_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, int64_t fs_in, int samples_per_ms, int samples_per_code, bool bit_transition_flag, bool dump, const std::string &dump_filename, bool both_signal_components_, int CAF_window_hz_, int Zero_padding_, bool enable_monitor_output) { return galileo_e5a_noncoherentIQ_acquisition_caf_cc_sptr( new galileo_e5a_noncoherentIQ_acquisition_caf_cc(sampled_ms, max_dwells, doppler_max, fs_in, samples_per_ms, samples_per_code, bit_transition_flag, dump, dump_filename, both_signal_components_, CAF_window_hz_, Zero_padding_, enable_monitor_output)); } galileo_e5a_noncoherentIQ_acquisition_caf_cc::galileo_e5a_noncoherentIQ_acquisition_caf_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, int64_t fs_in, int samples_per_ms, int samples_per_code, bool bit_transition_flag, bool dump, const std::string &dump_filename, bool both_signal_components_, int CAF_window_hz_, int Zero_padding_, bool enable_monitor_output) : gr::block("galileo_e5a_noncoherentIQ_acquisition_caf_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(0, 1, sizeof(Gnss_Synchro))) { this->message_port_register_out(pmt::mp("events")); d_sample_counter = 0ULL; // SAMPLE COUNTER d_active = false; d_state = 0; d_fs_in = fs_in; d_samples_per_ms = samples_per_ms; d_samples_per_code = samples_per_code; d_max_dwells = max_dwells; d_well_count = 0; d_doppler_max = static_cast(doppler_max); if (Zero_padding_ > 0) { d_sampled_ms = 1; } else { d_sampled_ms = sampled_ms; } d_fft_size = static_cast(sampled_ms) * d_samples_per_ms; d_mag = 0; d_input_power = 0.0; d_num_doppler_bins = 0; d_bit_transition_flag = bit_transition_flag; d_buffer_count = 0; d_both_signal_components = both_signal_components_; d_CAF_window_hz = CAF_window_hz_; d_enable_monitor_output = enable_monitor_output; d_inbuffer.reserve(d_fft_size); d_fft_code_I_A.reserve(d_fft_size); d_magnitudeIA.reserve(d_fft_size); if (d_both_signal_components == true) { d_fft_code_Q_A.reserve(d_fft_size); d_magnitudeQA.reserve(d_fft_size); } // IF COHERENT INTEGRATION TIME > 1 if (d_sampled_ms > 1) { d_fft_code_I_B.reserve(d_fft_size); d_magnitudeIB.reserve(d_fft_size); if (d_both_signal_components == true) { d_fft_code_Q_B.reserve(d_fft_size); d_magnitudeQB.reserve(d_fft_size); } } // Direct FFT d_fft_if = std::make_unique(d_fft_size, true); // Inverse FFT d_ifft = std::make_unique(d_fft_size, false); // For dumping samples into a file d_dump = dump; d_dump_filename = dump_filename; d_doppler_resolution = 0; d_threshold = 0; d_doppler_step = 250; d_gnss_synchro = nullptr; d_code_phase = 0; d_doppler_freq = 0; d_test_statistics = 0; d_channel = 0; d_gr_stream_buffer = 0; } galileo_e5a_noncoherentIQ_acquisition_caf_cc::~galileo_e5a_noncoherentIQ_acquisition_caf_cc() { try { if (d_dump) { d_dump_file.close(); } } catch (const std::ofstream::failure &e) { std::cerr << "Problem closing Acquisition dump file: " << d_dump_filename << '\n'; } catch (const std::exception &e) { std::cerr << e.what() << '\n'; } } void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_local_code(std::complex *codeI, std::complex *codeQ) { // DATA SIGNAL // Three replicas of data primary code. CODE A: (1,1,1) memcpy(d_fft_if->get_inbuf(), codeI, sizeof(gr_complex) * d_fft_size); d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_I_A.data(), d_fft_if->get_outbuf(), d_fft_size); // SAME FOR PILOT SIGNAL if (d_both_signal_components == true) { // Three replicas of pilot primary code. CODE A: (1,1,1) memcpy(d_fft_if->get_inbuf(), codeQ, sizeof(gr_complex) * d_fft_size); d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_Q_A.data(), d_fft_if->get_outbuf(), d_fft_size); } // IF INTEGRATION TIME > 1 code, we need to evaluate the other possible combination // Note: max integration time allowed = 3ms (dealt in adapter) if (d_sampled_ms > 1) { // DATA CODE B: First replica is inverted (0,1,1) volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0], &codeI[0], gr_complex(-1, 0), d_samples_per_code); d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_I_B.data(), d_fft_if->get_outbuf(), d_fft_size); if (d_both_signal_components == true) { // PILOT CODE B: First replica is inverted (0,1,1) volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0], &codeQ[0], gr_complex(-1, 0), d_samples_per_code); d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_Q_B.data(), d_fft_if->get_outbuf(), d_fft_size); } } } void galileo_e5a_noncoherentIQ_acquisition_caf_cc::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_doppler_step = 0U; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_mag = 0.0; d_input_power = 0.0; // Count the number of bins d_num_doppler_bins = 0; for (int doppler = -d_doppler_max; doppler <= d_doppler_max; doppler += d_doppler_step) { d_num_doppler_bins++; } // Create the carrier Doppler wipeoff signals d_grid_doppler_wipeoffs = std::vector>(d_num_doppler_bins, std::vector(d_fft_size)); for (int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { int doppler = -d_doppler_max + d_doppler_step * doppler_index; float phase_step_rad = static_cast(TWO_PI) * static_cast(doppler) / static_cast(d_fs_in); std::array _phase{}; volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index].data(), -phase_step_rad, _phase.data(), d_fft_size); } /* CAF Filtering to resolve doppler ambiguity. Phase and quadrature must be processed * separately before non-coherent integration */ if (d_CAF_window_hz > 0) { d_CAF_vector.reserve(d_num_doppler_bins); d_CAF_vector_I.reserve(d_num_doppler_bins); if (d_both_signal_components == true) { d_CAF_vector_Q.reserve(d_num_doppler_bins); } } } void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_state(int state) { d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; } else if (d_state == 0) { } else { LOG(ERROR) << "State can only be set to 0 or 1"; } } int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { /* * By J.Arribas, L.Esteve, M.Molina and M.Sales * Acquisition strategy (Kay Borre book + CFAR threshold): * 1. Compute the input signal power estimation * 2. Doppler serial search loop * 3. Perform the FFT-based circular convolution (parallel time search) * 4. OPTIONAL: CAF filter to avoid doppler ambiguity * 5. Record the maximum peak and the associated synchronization parameters * 6. Compute the test statistics and compare to the threshold * 7. Declare positive or negative acquisition using a message port */ int acquisition_message = -1; // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL int return_value = 0; // 0=Produces no Gnss_Synchro objects /* States: 0 Stop Channel * 1 Load the buffer until it reaches fft_size * 2 Acquisition algorithm * 3 Positive acquisition * 4 Negative acquisition */ switch (d_state) { case 0: { if (d_active) { // restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; } d_sample_counter += static_cast(ninput_items[0]); // sample counter consume_each(ninput_items[0]); break; } case 1: { const auto *in = reinterpret_cast(input_items[0]); // Get the input samples pointer int buff_increment; if ((ninput_items[0] + d_buffer_count) <= d_fft_size) { buff_increment = ninput_items[0]; } else { buff_increment = d_fft_size - d_buffer_count; } memcpy(&d_inbuffer[d_buffer_count], in, sizeof(gr_complex) * buff_increment); // If buffer will be full in next iteration if (d_buffer_count >= static_cast(d_fft_size - d_gr_stream_buffer)) { d_state = 2; } d_buffer_count += buff_increment; d_sample_counter += static_cast(buff_increment); // sample counter consume_each(buff_increment); break; } case 2: { // Fill last part of the buffer and reset counter const auto *in = reinterpret_cast(input_items[0]); // Get the input samples pointer if (d_buffer_count < d_fft_size) { memcpy(&d_inbuffer[d_buffer_count], in, sizeof(gr_complex) * (d_fft_size - d_buffer_count)); } d_sample_counter += static_cast(d_fft_size - d_buffer_count); // sample counter // initialize acquisition algorithm int doppler; uint32_t indext = 0; uint32_t indext_IA = 0; uint32_t indext_IB = 0; uint32_t indext_QA = 0; uint32_t indext_QB = 0; float magt = 0.0; float magt_IA = 0.0; float magt_IB = 0.0; float magt_QA = 0.0; float magt_QB = 0.0; float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_input_power = 0.0; d_mag = 0.0; d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " ,sample stamp: " << d_sample_counter << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step; // 1- Compute the input signal power estimation volk_32fc_magnitude_squared_32f(d_magnitudeIA.data(), d_inbuffer.data(), d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitudeIA.data(), d_fft_size); d_input_power /= static_cast(d_fft_size); // 2- Doppler frequency search loop for (int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { // doppler search steps doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_inbuffer.data(), d_grid_doppler_wipeoffs[doppler_index].data(), d_fft_size); // 3- Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // CODE IA // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd code reference using SIMD operations with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_I_A.data(), d_fft_size); // compute the inverse FFT d_ifft->execute(); // Search maximum volk_32fc_magnitude_squared_32f(d_magnitudeIA.data(), d_ifft->get_outbuf(), d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_IA, d_magnitudeIA.data(), d_fft_size); // Normalize the maximum value to correct the scale factor introduced by FFTW magt_IA = d_magnitudeIA[indext_IA] / (fft_normalization_factor * fft_normalization_factor); if (d_both_signal_components == true) { // REPEAT FOR ALL CODES. CODE_QA volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_Q_A.data(), d_fft_size); d_ifft->execute(); volk_32fc_magnitude_squared_32f(d_magnitudeQA.data(), d_ifft->get_outbuf(), d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_QA, d_magnitudeQA.data(), d_fft_size); magt_QA = d_magnitudeQA[indext_QA] / (fft_normalization_factor * fft_normalization_factor); } if (d_sampled_ms > 1) // If Integration time > 1 code { // REPEAT FOR ALL CODES. CODE_IB volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_I_B.data(), d_fft_size); d_ifft->execute(); volk_32fc_magnitude_squared_32f(d_magnitudeIB.data(), d_ifft->get_outbuf(), d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_IB, d_magnitudeIB.data(), d_fft_size); magt_IB = d_magnitudeIB[indext_IB] / (fft_normalization_factor * fft_normalization_factor); if (d_both_signal_components == true) { // REPEAT FOR ALL CODES. CODE_QB volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_Q_B.data(), d_fft_size); d_ifft->execute(); volk_32fc_magnitude_squared_32f(d_magnitudeQB.data(), d_ifft->get_outbuf(), d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_QB, d_magnitudeQB.data(), d_fft_size); magt_QB = d_magnitudeIB[indext_QB] / (fft_normalization_factor * fft_normalization_factor); } } // Integrate noncoherently the two best combinations (I² + Q²) // and store the result in the I channel. // If CAF filter to resolve doppler ambiguity is needed, // peak is stored before non-coherent integration. if (d_sampled_ms > 1) // T_integration > 1 code { if (magt_IA >= magt_IB) { if (d_CAF_window_hz > 0) { d_CAF_vector_I[doppler_index] = d_magnitudeIA[indext_IA]; } if (d_both_signal_components) { // Integrate non-coherently I+Q if (magt_QA >= magt_QB) { if (d_CAF_window_hz > 0) { d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA]; } for (int i = 0; i < d_fft_size; i++) { d_magnitudeIA[i] += d_magnitudeQA[i]; } } else { if (d_CAF_window_hz > 0) { d_CAF_vector_Q[doppler_index] = d_magnitudeQB[indext_QB]; } for (int i = 0; i < d_fft_size; i++) { d_magnitudeIA[i] += d_magnitudeQB[i]; } } } volk_gnsssdr_32f_index_max_32u(&indext, d_magnitudeIA.data(), d_fft_size); magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor); } else { if (d_CAF_window_hz > 0) { d_CAF_vector_I[doppler_index] = d_magnitudeIB[indext_IB]; } if (d_both_signal_components) { // Integrate non-coherently I+Q if (magt_QA >= magt_QB) { if (d_CAF_window_hz > 0) { d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA]; } for (int i = 0; i < d_fft_size; i++) { d_magnitudeIB[i] += d_magnitudeQA[i]; } } else { if (d_CAF_window_hz > 0) { d_CAF_vector_Q[doppler_index] = d_magnitudeQB[indext_QB]; } for (int i = 0; i < d_fft_size; i++) { d_magnitudeIB[i] += d_magnitudeQB[i]; } } } volk_gnsssdr_32f_index_max_32u(&indext, d_magnitudeIB.data(), d_fft_size); magt = d_magnitudeIB[indext] / (fft_normalization_factor * fft_normalization_factor); } } else { if (d_CAF_window_hz > 0) { d_CAF_vector_I[doppler_index] = d_magnitudeIA[indext_IA]; } if (d_both_signal_components) { if (d_CAF_window_hz > 0) { d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA]; } // NON-Coherent integration of only 1 code for (int i = 0; i < d_fft_size; i++) { d_magnitudeIA[i] += d_magnitudeQA[i]; } } volk_gnsssdr_32f_index_max_32u(&indext, d_magnitudeIA.data(), d_fft_size); magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor); } // 4- record the maximum peak and the associated synchronization parameters if (d_mag < magt) { d_mag = magt; // In case that d_bit_transition_flag = true, we compare the potentially // new maximum test statistics (d_mag/d_input_power) with the value in // d_test_statistics. When the second dwell is being processed, the value // of d_mag/d_input_power could be lower than d_test_statistics (i.e, // the maximum test statistics in the previous dwell is greater than // current d_mag/d_input_power). Note that d_test_statistics is not // restarted between consecutive dwells in multidwell operation. if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag) { d_gnss_synchro->Acq_delay_samples = static_cast(indext % d_samples_per_code); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_doppler_step = d_doppler_step; // 5- Compute the test statistics and compare to the threshold d_test_statistics = d_mag / d_input_power; } } // Record results to file if required if (d_dump) { std::stringstream filename; std::streamsize n = sizeof(float) * (d_fft_size); // noncomplex file write filename.str(""); filename << "../data/test_statistics_E5a_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); if (d_sampled_ms > 1) // If integration time > 1 code { if (magt_IA >= magt_IB) { d_dump_file.write(reinterpret_cast(d_magnitudeIA.data()), n); } else { d_dump_file.write(reinterpret_cast(d_magnitudeIB.data()), n); } } else { d_dump_file.write(reinterpret_cast(d_magnitudeIA.data()), n); } d_dump_file.close(); } } // std::cout << "d_mag " << d_mag << ".d_sample_counter " << d_sample_counter << ". acq delay " << d_gnss_synchro->Acq_delay_samples<< " indext "<< indext << '\n'; // 6 OPTIONAL: CAF filter to avoid Doppler ambiguity in bit transition. if (d_CAF_window_hz > 0) { int CAF_bins_half; std::array accum{}; CAF_bins_half = d_CAF_window_hz / (2 * d_doppler_step); float weighting_factor; weighting_factor = 0.5F / static_cast(CAF_bins_half); // weighting_factor = 0; // std::cout << "weighting_factor " << weighting_factor << '\n'; // Initialize first iterations for (int doppler_index = 0; doppler_index < CAF_bins_half; doppler_index++) { d_CAF_vector[doppler_index] = 0; for (int i = 0; i < CAF_bins_half + doppler_index + 1; i++) { d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1.0F - weighting_factor * static_cast((doppler_index - i))); } d_CAF_vector[doppler_index] /= static_cast(1.0F + static_cast(CAF_bins_half + doppler_index) - weighting_factor * static_cast(CAF_bins_half) * ((static_cast(CAF_bins_half) + 1.0F) / 2.0F) - weighting_factor * static_cast(doppler_index) * (static_cast(doppler_index) + 1.0F) / 2.0F); // triangles = [n*(n+1)/2] if (d_both_signal_components) { accum[0] = 0; for (int i = 0; i < CAF_bins_half + doppler_index + 1; i++) { accum[0] += static_cast(d_CAF_vector_Q[i] * (1.0F - weighting_factor * static_cast(abs(doppler_index - i)))); } accum[0] /= static_cast(1.0F + static_cast(CAF_bins_half + doppler_index) - weighting_factor * static_cast(CAF_bins_half) * static_cast(CAF_bins_half + 1) / 2.0F - weighting_factor * static_cast(doppler_index) * static_cast(doppler_index + 1) / 2.0F); // triangles = [n*(n+1)/2] d_CAF_vector[doppler_index] += accum[0]; } } // Body loop for (int doppler_index = CAF_bins_half; doppler_index < d_num_doppler_bins - CAF_bins_half; doppler_index++) { d_CAF_vector[doppler_index] = 0; for (int i = doppler_index - CAF_bins_half; i < static_cast(doppler_index + CAF_bins_half + 1); i++) { d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1.0F - weighting_factor * static_cast((doppler_index - i))); } d_CAF_vector[doppler_index] /= static_cast(1.0F + 2.0F * static_cast(CAF_bins_half) - 2.0F * weighting_factor * static_cast(CAF_bins_half) * static_cast(CAF_bins_half + 1) / 2.0F); if (d_both_signal_components) { accum[0] = 0; for (int i = doppler_index - CAF_bins_half; i < static_cast(doppler_index + CAF_bins_half + 1); i++) { accum[0] += static_cast(d_CAF_vector_Q[i] * (1 - weighting_factor * static_cast((doppler_index - i)))); } accum[0] /= static_cast(1.0F + 2.0F * static_cast(CAF_bins_half) - 2.0F * weighting_factor * static_cast(CAF_bins_half) * static_cast(CAF_bins_half + 1) / 2.0F); d_CAF_vector[doppler_index] += accum[0]; } } // Final iterations for (int doppler_index = d_num_doppler_bins - CAF_bins_half; doppler_index < static_cast(d_num_doppler_bins); doppler_index++) { d_CAF_vector[doppler_index] = 0; for (int i = doppler_index - CAF_bins_half; i < static_cast(d_num_doppler_bins); i++) { d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1.0F - weighting_factor * static_cast(abs(doppler_index - i))); } d_CAF_vector[doppler_index] /= static_cast(1.0F + static_cast(CAF_bins_half) + static_cast(d_num_doppler_bins - doppler_index - 1) - weighting_factor * static_cast(CAF_bins_half) * (static_cast(CAF_bins_half) + 1.0F) / 2.0F - weighting_factor * static_cast(d_num_doppler_bins - doppler_index - 1) * static_cast(d_num_doppler_bins - doppler_index) / 2.0F); if (d_both_signal_components) { accum[0] = 0; for (int i = doppler_index - CAF_bins_half; i < static_cast(d_num_doppler_bins); i++) { accum[0] += static_cast(d_CAF_vector_Q[i] * (1.0F - weighting_factor * static_cast(abs(doppler_index - i)))); } accum[0] /= static_cast(1.0F + static_cast(CAF_bins_half) + static_cast(d_num_doppler_bins - doppler_index - 1) - weighting_factor * static_cast(CAF_bins_half) * static_cast(CAF_bins_half + 1.0) / 2.0 - weighting_factor * static_cast(d_num_doppler_bins - doppler_index - 1) * static_cast(d_num_doppler_bins - doppler_index) / 2.0); d_CAF_vector[doppler_index] += accum[0]; } } // Recompute the maximum doppler peak volk_gnsssdr_32f_index_max_32u(&indext, d_CAF_vector.data(), d_num_doppler_bins); doppler = -d_doppler_max + d_doppler_step * static_cast(indext); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); // Dump if required, appended at the end of the file if (d_dump) { std::stringstream filename; std::streamsize n = sizeof(float) * (d_num_doppler_bins); // noncomplex file write filename.str(""); filename << "../data/test_statistics_E5a_sat_" << d_gnss_synchro->PRN << "_CAF.dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.write(reinterpret_cast(d_CAF_vector.data()), n); d_dump_file.close(); } } if (d_well_count == d_max_dwells) { if (d_test_statistics > d_threshold) { d_state = 3; // Positive acquisition } else { d_state = 4; // Negative acquisition } } else { d_state = 1; } consume_each(d_fft_size - d_buffer_count); d_buffer_count = 0; break; } case 3: { // 7.1- Declare positive acquisition using a message port DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; acquisition_message = 1; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); d_sample_counter += static_cast(ninput_items[0]); // sample counter consume_each(ninput_items[0]); // Copy and push current Gnss_Synchro to monitor queue if (d_enable_monitor_output) { auto **out = reinterpret_cast(&output_items[0]); Gnss_Synchro current_synchro_data = Gnss_Synchro(); current_synchro_data = *d_gnss_synchro; *out[0] = current_synchro_data; return_value = 1; // Number of Gnss_Synchro objects produced } break; } case 4: { // 7.2- Declare negative acquisition using a message port DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += static_cast(ninput_items[0]); // sample counter consume_each(ninput_items[0]); acquisition_message = 2; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); break; } } return return_value; }