/*! * \file rtcm.cc * \brief Implementation of RTCM 3.2 Standard * \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "rtcm.h" #include // for std::reverse #include // for std::fmod #include // for strtol #include // for std::stringstream #include // for to_upper_copy #include #include #include #include #include "GPS_L1_CA.h" #include "GPS_L2C.h" #include "MATH_CONSTANTS.h" using google::LogMessage; DEFINE_int32(RTCM_Ref_Station_ID, 1234, "Reference Station ID in RTCM messages"); Rtcm::Rtcm() { Rtcm::reset_data_fields(); preamble = std::bitset<8>("11010011"); reserved_field = std::bitset<6>("000000"); } // ***************************************************************************************************** // // TRANSPORT LAYER AS DEFINED AT RTCM STANDARD 10403.2 // // ***************************************************************************************************** std::string Rtcm::add_CRC (const std::string& message_without_crc) { // ****** Computes Qualcomm CRC-24Q ****** crc_24_q_type CRC_RTCM; // 1) Converts the string to a vector of unsigned char: boost::dynamic_bitset frame_bits(message_without_crc); std::vector bytes; boost::to_block_range(frame_bits, std::back_inserter(bytes)); std::reverse(bytes.begin(),bytes.end()); // 2) Computes CRC CRC_RTCM.process_bytes(bytes.data(), bytes.size()); crc_frame = std::bitset<24>(CRC_RTCM.checksum()); // 3) Builds the complete message std::string complete_message = message_without_crc + crc_frame.to_string(); return bin_to_hex(complete_message); } bool Rtcm::check_CRC(const std::string & message) { crc_24_q_type CRC_RTCM_CHECK; // Convert message to binary std::string message_bin = Rtcm::hex_to_bin(message); // Check CRC std::string crc = message_bin.substr(message_bin.length() - 24, 24); std::bitset<24> read_crc = std::bitset<24>(crc); std::string msg_without_crc = message_bin.substr(0, message_bin.length() - 24); boost::dynamic_bitset frame_bits(msg_without_crc); std::vector bytes; boost::to_block_range(frame_bits, std::back_inserter(bytes)); std::reverse(bytes.begin(),bytes.end()); CRC_RTCM_CHECK.process_bytes(bytes.data(), bytes.size()); std::bitset<24> computed_crc = std::bitset<24>(CRC_RTCM_CHECK.checksum()); if(read_crc == computed_crc) { return true; } else { return false; } } std::string Rtcm::bin_to_hex(const std::string& s) { std::string s_aux; std::stringstream ss; int remainder = static_cast(std::fmod(s.length(), 4)); if (remainder != 0) { s_aux.assign(s, 0 , remainder); boost::dynamic_bitset<> rembits(s_aux); unsigned n = rembits.to_ulong(); ss << std::hex << n; } unsigned int start = std::max(remainder, 0); for(unsigned int i = start; i < s.length() - 1; i = i + 4) { s_aux.assign(s, i, 4); std::bitset<4> bs(s_aux); unsigned n = bs.to_ulong(); ss << std::hex << n; } return boost::to_upper_copy(ss.str()); } std::string Rtcm::hex_to_bin(const std::string& s) { std::string s_aux; s_aux.clear(); std::stringstream ss; ss << s; std::string s_lower = boost::to_upper_copy(ss.str()); for(unsigned int i = 0; i < s.length(); i++) { unsigned long int n; std::istringstream(s_lower.substr(i,1)) >> std::hex >> n; std::bitset<4> bs(n); s_aux += bs.to_string(); } return s_aux; } unsigned long int Rtcm::bin_to_uint(const std::string& s) { if(s.length() > 32) { LOG(WARNING) << "Cannot convert to a unsigned long int"; return 0; } unsigned long int reading = strtoul(s.c_str(), NULL, 2); return reading; } long int Rtcm::bin_to_int(const std::string& s) { if(s.length() > 32) { LOG(WARNING) << "Cannot convert to a long int"; return 0; } long int reading; // Handle negative numbers if(s.substr(0,1).compare("0")) { // Computing two's complement boost::dynamic_bitset<> original_bitset(s); original_bitset.flip(); reading = - (original_bitset.to_ulong() + 1); } else { reading = strtol(s.c_str(), NULL, 2); } return reading; } double Rtcm::bin_to_double(const std::string& s) { double reading; if(s.length() > 64) { LOG(WARNING) << "Cannot convert to a double"; return 0; } long long int reading_int; // Handle negative numbers if(s.substr(0,1).compare("0")) { // Computing two's complement boost::dynamic_bitset<> original_bitset(s); original_bitset.flip(); reading_int = - (original_bitset.to_ulong() + 1); } else { reading_int = strtoll(s.c_str(), NULL, 2); } reading = static_cast(reading_int); return reading; } unsigned long int Rtcm::hex_to_uint(const std::string& s) { if(s.length() > 32) { LOG(WARNING) << "Cannot convert to a unsigned long int"; return 0; } unsigned long int reading = strtoul(s.c_str(), NULL, 16); return reading; } long int Rtcm::hex_to_int(const std::string& s) { if(s.length() > 32) { LOG(WARNING) << "Cannot convert to a long int"; return 0; } long int reading = strtol(s.c_str(), NULL, 16); return reading; } std::string Rtcm::build_message(std::string data) { unsigned int msg_length_bits = data.length(); unsigned int msg_length_bytes = std::ceil(static_cast(msg_length_bits) / 8.0); message_length = std::bitset<10>(msg_length_bytes); unsigned int zeros_to_fill = 8 * msg_length_bytes - msg_length_bits; std::string b(zeros_to_fill, '0'); std::string msg_content = data + b; std::string msg_without_crc = preamble.to_string() + reserved_field.to_string() + message_length.to_string() + msg_content; return Rtcm::add_CRC(msg_without_crc); } // ***************************************************************************************************** // // MESSAGES AS DEFINED AT RTCM STANDARD 10403.2 // // ***************************************************************************************************** // ********************************************** // // MESSAGE TYPE 1001 (GPS L1 OBSERVATIONS) // // ********************************************** std::bitset<64> Rtcm::get_MT1001_4_header(unsigned int msg_number, const Gps_Ephemeris & gps_eph, double obs_time, const std::map & pseudoranges, unsigned int ref_id, unsigned int smooth_int, bool sync_flag, bool divergence_free) { unsigned int reference_station_id = ref_id; // Max: 4095 const std::map pseudoranges_ = pseudoranges; bool synchronous_GNSS_flag = sync_flag; bool divergence_free_smoothing_indicator = divergence_free; unsigned int smoothing_interval = smooth_int; Rtcm::set_DF002(msg_number); Rtcm::set_DF003(reference_station_id); Rtcm::set_DF004(gps_eph, obs_time); Rtcm::set_DF005(synchronous_GNSS_flag); Rtcm::set_DF006(pseudoranges_); Rtcm::set_DF007(divergence_free_smoothing_indicator); Rtcm::set_DF008(smoothing_interval); std::string header = DF002.to_string() + DF003.to_string() + DF004.to_string() + DF005.to_string() + DF006.to_string() + DF007.to_string() + DF008.to_string(); std::bitset<64> header_msg(header); return header_msg; } std::bitset<58> Rtcm::get_MT1001_sat_content(const Gnss_Synchro & gnss_synchro) { Gnss_Synchro gnss_synchro_ = gnss_synchro; bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct Rtcm::set_DF009(gnss_synchro_); Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct Rtcm::set_DF011(gnss_synchro_); Rtcm::set_DF012(gnss_synchro_); unsigned int lock_time_indicator = 0; // TODO DF013 = std::bitset<7>(lock_time_indicator); std::string content = DF009.to_string() + DF010.to_string() + DF011.to_string() + DF012.to_string() + DF013.to_string(); std::bitset<58> content_msg(content); return content_msg; } std::string Rtcm::print_MT1001(const Gps_Ephemeris & gps_eph, double obs_time, const std::map & pseudoranges) { unsigned int ref_id = static_cast(FLAGS_RTCM_Ref_Station_ID); unsigned int smooth_int = 0; bool sync_flag = false; bool divergence_free = false; std::bitset<64> header = Rtcm::get_MT1001_4_header(1001, gps_eph, obs_time, pseudoranges, ref_id, smooth_int, sync_flag, divergence_free); std::string data = header.to_string(); std::map::const_iterator pseudoranges_iter; for(pseudoranges_iter = pseudoranges.begin(); pseudoranges_iter != pseudoranges.end(); pseudoranges_iter++) { std::bitset<58> content = Rtcm::get_MT1001_sat_content(pseudoranges_iter->second); data += content.to_string(); } return Rtcm::build_message(data); } // ********************************************** // // MESSAGE TYPE 1002 (EXTENDED GPS L1 OBSERVATIONS) // // ********************************************** std::string Rtcm::print_MT1002(const Gps_Ephemeris & gps_eph, double obs_time, const std::map & pseudoranges) { unsigned int ref_id = static_cast(FLAGS_RTCM_Ref_Station_ID); unsigned int smooth_int = 0; bool sync_flag = false; bool divergence_free = false; std::bitset<64> header = Rtcm::get_MT1001_4_header(1002, gps_eph, obs_time, pseudoranges, ref_id, smooth_int, sync_flag, divergence_free); std::string data = header.to_string(); std::map::const_iterator pseudoranges_iter; for(pseudoranges_iter = pseudoranges.begin(); pseudoranges_iter != pseudoranges.end(); pseudoranges_iter++) { std::bitset<74> content = Rtcm::get_MT1002_sat_content(pseudoranges_iter->second); data += content.to_string(); } return Rtcm::build_message(data); } std::bitset<74> Rtcm::get_MT1002_sat_content(const Gnss_Synchro & gnss_synchro) { Gnss_Synchro gnss_synchro_ = gnss_synchro; bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct Rtcm::set_DF009(gnss_synchro_); Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct Rtcm::set_DF011(gnss_synchro_); Rtcm::set_DF012(gnss_synchro_); unsigned int lock_time_indicator = 0; // TODO DF013 = std::bitset<7>(lock_time_indicator); std::string content = DF009.to_string() + DF010.to_string() + DF011.to_string() + DF012.to_string() + DF013.to_string() + DF014.to_string() + DF015.to_string(); std::bitset<74> content_msg(content); return content_msg; } // ********************************************** // // MESSAGE TYPE 1005 (STATION DESCRIPTION) // // ********************************************** /* Stationary Antenna Reference Point, No Height Information * Reference Station Id = 2003 GPS Service supported, but not GLONASS or Galileo ARP ECEF-X = 1114104.5999 meters ARP ECEF-Y = -4850729.7108 meters ARP ECEF-Z = 3975521.4643 meters Expected output: D3 00 13 3E D7 D3 02 02 98 0E DE EF 34 B4 BD 62 AC 09 41 98 6F 33 36 0B 98 */ std::bitset<152> Rtcm::get_MT1005_test () { unsigned int mt1005 = 1005; unsigned int reference_station_id = 2003; // Max: 4095 double ECEF_X = 1114104.5999; // units: m double ECEF_Y = -4850729.7108; // units: m double ECEF_Z = 3975521.4643; // units: m std::bitset<1> DF001_; Rtcm::set_DF002(mt1005); Rtcm::set_DF003(reference_station_id); Rtcm::set_DF021(); Rtcm::set_DF022(true); // GPS Rtcm::set_DF023(false); // Glonass Rtcm::set_DF024(false); // Galileo DF141 = std::bitset<1>("0"); // 0: Real, physical reference station DF001_ = std::bitset<1>("0"); // Reserved, set to 0 Rtcm::set_DF025(ECEF_X); DF142 = std::bitset<1>("0"); // Single Receiver Oscillator Indicator Rtcm::set_DF026(ECEF_Y); DF364 = std::bitset<2>("00"); // Quarter Cycle Indicator Rtcm::set_DF027(ECEF_Z); std::string message = DF002.to_string() + DF003.to_string() + DF021.to_string() + DF022.to_string() + DF023.to_string() + DF024.to_string() + DF141.to_string() + DF025.to_string() + DF142.to_string() + DF001_.to_string() + DF026.to_string() + DF364.to_string() + DF027.to_string() ; std::bitset<152> test_msg(message); return test_msg; } std::string Rtcm::print_MT1005( unsigned int ref_id, double ecef_x, double ecef_y, double ecef_z, bool gps, bool glonass, bool galileo, bool non_physical, bool single_oscillator, unsigned int quarter_cycle_indicator) { unsigned int msg_number = 1005; std::bitset<1> DF001_; Rtcm::set_DF002(msg_number); Rtcm::set_DF003(ref_id); Rtcm::set_DF021(); Rtcm::set_DF022(gps); Rtcm::set_DF023(glonass); Rtcm::set_DF024(galileo); DF141 = std::bitset<1>(non_physical); DF001_ = std::bitset<1>("0"); Rtcm::set_DF025(ecef_x); DF142 = std::bitset<1>(single_oscillator); Rtcm::set_DF026(ecef_y); DF364 = std::bitset<2>(quarter_cycle_indicator); Rtcm::set_DF027(ecef_z); std::string data = DF002.to_string() + DF003.to_string() + DF021.to_string() + DF022.to_string() + DF023.to_string() + DF024.to_string() + DF141.to_string() + DF025.to_string() + DF142.to_string() + DF001_.to_string() + DF026.to_string() + DF364.to_string() + DF027.to_string() ; std::string message = build_message(data); return message; } int Rtcm::read_MT1005(const std::string & message, unsigned int & ref_id, double & ecef_x, double & ecef_y, double & ecef_z, bool & gps, bool & glonass, bool & galileo) { // Convert message to binary std::string message_bin = Rtcm::hex_to_bin(message); if(!Rtcm::check_CRC(message) ) { LOG(WARNING) << " Bad CRC detected in RTCM message MT1005"; return 1; } // Check than the message number is correct unsigned int preamble_length = 8; unsigned int reserved_field_length = 6; unsigned int index = preamble_length + reserved_field_length; unsigned int read_message_length = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10))); index += 10; if (read_message_length != 19) { LOG(WARNING) << " Message MT1005 with wrong length (19 bytes expected, " << read_message_length << " received)"; return 1; } unsigned int msg_number = 1005; Rtcm::set_DF002(msg_number); std::bitset<12> read_msg_number(message_bin.substr(index, 12)); index += 12; if (DF002 != read_msg_number) { LOG(WARNING) << " This is not a MT1005 message"; return 1; } ref_id = Rtcm::bin_to_uint(message_bin.substr(index, 12)); index += 12; index += 6; // ITRF year gps = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1))); index += 1; glonass = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1))); index += 1; galileo = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1))); index += 1; index += 1; // ref_station_indicator ecef_x = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0; index += 38; index += 1; // single rx oscillator index += 1; // reserved ecef_y = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0; index += 38; index += 2; // quarter cycle indicator ecef_z = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0; return 0; } std::string Rtcm::print_MT1005_test() { std::bitset<152> mt1005 = get_MT1005_test(); return Rtcm::build_message(mt1005.to_string()); } // ********************************************** // // MESSAGE TYPE 1019 (GPS EPHEMERIS) // // ********************************************** std::string Rtcm::print_MT1019(const Gps_Ephemeris & gps_eph) { unsigned int msg_number = 1019; Rtcm::set_DF002(msg_number); Rtcm::set_DF009(gps_eph); Rtcm::set_DF076(gps_eph); Rtcm::set_DF077(gps_eph); Rtcm::set_DF078(gps_eph); Rtcm::set_DF079(gps_eph); Rtcm::set_DF071(gps_eph); Rtcm::set_DF081(gps_eph); Rtcm::set_DF082(gps_eph); Rtcm::set_DF083(gps_eph); Rtcm::set_DF084(gps_eph); Rtcm::set_DF085(gps_eph); Rtcm::set_DF086(gps_eph); Rtcm::set_DF087(gps_eph); Rtcm::set_DF088(gps_eph); Rtcm::set_DF089(gps_eph); Rtcm::set_DF090(gps_eph); Rtcm::set_DF091(gps_eph); Rtcm::set_DF092(gps_eph); Rtcm::set_DF093(gps_eph); Rtcm::set_DF094(gps_eph); Rtcm::set_DF095(gps_eph); Rtcm::set_DF096(gps_eph); Rtcm::set_DF097(gps_eph); Rtcm::set_DF098(gps_eph); Rtcm::set_DF099(gps_eph); Rtcm::set_DF100(gps_eph); Rtcm::set_DF101(gps_eph); Rtcm::set_DF102(gps_eph); Rtcm::set_DF103(gps_eph); Rtcm::set_DF137(gps_eph); std::string data; data.clear(); data = DF002.to_string() + DF009.to_string() + DF076.to_string() + DF077.to_string() + DF078.to_string() + DF079.to_string() + DF071.to_string() + DF081.to_string() + DF082.to_string() + DF083.to_string() + DF084.to_string() + DF085.to_string() + DF086.to_string() + DF087.to_string() + DF088.to_string() + DF089.to_string() + DF090.to_string() + DF091.to_string() + DF092.to_string() + DF093.to_string() + DF094.to_string() + DF095.to_string() + DF096.to_string() + DF097.to_string() + DF098.to_string() + DF099.to_string() + DF100.to_string() + DF101.to_string() + DF102.to_string() + DF103.to_string() + DF137.to_string(); if (data.length() != 488) { LOG(WARNING) << "Bad-formatted RTCM MT1019 (488 bits expected, found " << data.length() << ")"; } message1019_content = std::bitset<488>(data); std::string message = build_message(data); return message; } int Rtcm::read_MT1019(const std::string & message, Gps_Ephemeris & gps_eph) { // Convert message to binary std::string message_bin = Rtcm::hex_to_bin(message); if(!Rtcm::check_CRC(message) ) { LOG(WARNING) << " Bad CRC detected in RTCM message MT1019"; return 1; } unsigned int preamble_length = 8; unsigned int reserved_field_length = 6; unsigned int index = preamble_length + reserved_field_length; unsigned int read_message_length = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10))); index += 10; if (read_message_length != 61) { LOG(WARNING) << " Message MT1019 seems too long (61 bytes expected, " << read_message_length << " received)"; return 1; } // Check than the message number is correct unsigned int read_msg_number = Rtcm::bin_to_uint(message_bin.substr(index, 12)); index += 12; if (1019 != read_msg_number) { LOG(WARNING) << " This is not a MT1019 message"; return 1; } // Fill Gps Ephemeris with message data content gps_eph.i_satellite_PRN = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 6))); index += 6; gps_eph.i_GPS_week = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10))); index += 10; gps_eph.i_SV_accuracy = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 4))); index += 4; gps_eph.i_code_on_L2 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 2))); index += 2; gps_eph.d_IDOT = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 14))) * I_DOT_LSB; index += 14; gps_eph.d_IODE_SF2 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 8))); gps_eph.d_IODE_SF3 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 8))); index += 8; gps_eph.d_Toc = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 16))) * T_OC_LSB; index += 16; gps_eph.d_A_f2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 8))) * A_F2_LSB; index += 8; gps_eph.d_A_f1 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * A_F1_LSB; index += 16; gps_eph.d_A_f0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 22))) * A_F0_LSB; index += 22; gps_eph.d_IODC = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10))); index += 10; gps_eph.d_Crs = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_RS_LSB; index += 16; gps_eph.d_Delta_n = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * DELTA_N_LSB; index += 16; gps_eph.d_M_0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * M_0_LSB; index += 32; gps_eph.d_Cuc = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_UC_LSB; index += 16; gps_eph.d_e_eccentricity = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * E_LSB; index += 32; gps_eph.d_Cus = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_US_LSB; index += 16; gps_eph.d_sqrt_A = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * SQRT_A_LSB; index += 32; gps_eph.d_Toe = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 16))) * T_OE_LSB; index += 16; gps_eph.d_Cic = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_IC_LSB; index += 16; gps_eph.d_OMEGA0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_0_LSB; index += 32; gps_eph.d_Cis = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_IS_LSB; index += 16; gps_eph.d_i_0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * I_0_LSB; index += 32; gps_eph.d_Crc = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_RC_LSB; index += 16; gps_eph.d_OMEGA = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_LSB; index += 32; gps_eph.d_OMEGA_DOT = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 24))) * OMEGA_DOT_LSB; index += 24; gps_eph.d_TGD = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 8))) * T_GD_LSB; index += 8; gps_eph.i_SV_health = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 6))); index += 6; gps_eph.b_L2_P_data_flag = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1))); index += 1; gps_eph.b_fit_interval_flag = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1))); return 0; } // ********************************************** // // MESSAGE TYPE 1045 (GALILEO EPHEMERIS) // // ********************************************** std::string Rtcm::print_MT1045(const Galileo_Ephemeris & gal_eph) { unsigned int msg_number = 1045; Rtcm::set_DF002(msg_number); Rtcm::set_DF252(gal_eph); Rtcm::set_DF289(gal_eph); Rtcm::set_DF290(gal_eph); Rtcm::set_DF291(gal_eph); Rtcm::set_DF293(gal_eph); Rtcm::set_DF294(gal_eph); Rtcm::set_DF295(gal_eph); Rtcm::set_DF296(gal_eph); Rtcm::set_DF297(gal_eph); Rtcm::set_DF298(gal_eph); Rtcm::set_DF299(gal_eph); Rtcm::set_DF300(gal_eph); Rtcm::set_DF301(gal_eph); Rtcm::set_DF302(gal_eph); Rtcm::set_DF303(gal_eph); Rtcm::set_DF304(gal_eph); Rtcm::set_DF305(gal_eph); Rtcm::set_DF306(gal_eph); Rtcm::set_DF307(gal_eph); Rtcm::set_DF308(gal_eph); Rtcm::set_DF309(gal_eph); Rtcm::set_DF310(gal_eph); Rtcm::set_DF311(gal_eph); Rtcm::set_DF312(gal_eph); Rtcm::set_DF314(gal_eph); Rtcm::set_DF315(gal_eph); unsigned int seven_zero = 0; std::bitset<7> DF001_ = std::bitset<7>(seven_zero); std::string data; data.clear(); data = DF002.to_string() + DF252.to_string() + DF289.to_string() + DF290.to_string() + DF291.to_string() + DF292.to_string() + DF293.to_string() + DF294.to_string() + DF295.to_string() + DF296.to_string() + DF297.to_string() + DF298.to_string() + DF299.to_string() + DF300.to_string() + DF301.to_string() + DF302.to_string() + DF303.to_string() + DF304.to_string() + DF305.to_string() + DF306.to_string() + DF307.to_string() + DF308.to_string() + DF309.to_string() + DF310.to_string() + DF311.to_string() + DF312.to_string() + DF314.to_string() + DF315.to_string() + DF001_.to_string(); if (data.length() != 496) { LOG(WARNING) << "Bad-formatted RTCM MT1045 (496 bits expected, found " << data.length() << ")"; } message1045_content = std::bitset<496>(data); std::string message = build_message(data); return message; } int Rtcm::read_MT1045(const std::string & message, Galileo_Ephemeris & gal_eph) { // Convert message to binary std::string message_bin = Rtcm::hex_to_bin(message); if(!Rtcm::check_CRC(message) ) { LOG(WARNING) << " Bad CRC detected in RTCM message MT1045"; return 1; } unsigned int preamble_length = 8; unsigned int reserved_field_length = 6; unsigned int index = preamble_length + reserved_field_length; unsigned int read_message_length = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10))); index += 10; if (read_message_length != 62) { LOG(WARNING) << " Message MT1045 seems too long (62 bytes expected, " << read_message_length << " received)"; return 1; } // Check than the message number is correct unsigned int read_msg_number = Rtcm::bin_to_uint(message_bin.substr(index, 12)); index += 12; if (1045 != read_msg_number) { LOG(WARNING) << " This is not a MT1045 message"; return 1; } // Fill Galileo Ephemeris with message data content gal_eph.i_satellite_PRN = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 6))); index += 6; gal_eph.WN_5 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 12))); index += 12; gal_eph.IOD_nav_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10))); index += 10; gal_eph.SISA_3 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 8))); index += 8; gal_eph.iDot_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 14))) * iDot_2_LSB; index += 14; gal_eph.t0c_4 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 14))) * t0c_4_LSB; index += 14; gal_eph.af2_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 6))) * af2_4_LSB; index += 6; gal_eph.af1_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 21))) * af1_4_LSB; index += 21; gal_eph.af0_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 31))) * af0_4_LSB; index += 31; gal_eph.C_rs_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_rs_3_LSB; index += 16; gal_eph.delta_n_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * delta_n_3_LSB; index += 16; gal_eph.M0_1 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * M0_1_LSB; index += 32; gal_eph.C_uc_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_uc_3_LSB; index += 16; gal_eph.e_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * e_1_LSB; index += 32; gal_eph.C_us_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_us_3_LSB; index += 16; gal_eph.A_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * A_1_LSB_gal; index += 32; gal_eph.t0e_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 14))) * t0e_1_LSB; index += 14; gal_eph.C_ic_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_ic_4_LSB; index += 16; gal_eph.OMEGA_0_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_0_2_LSB; index += 32; gal_eph.C_is_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_is_4_LSB; index += 16; gal_eph.i_0_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * i_0_2_LSB; index += 32; gal_eph.C_rc_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_rc_3_LSB; index += 16; gal_eph.omega_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * omega_2_LSB; index += 32; gal_eph.OMEGA_dot_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 24))) * OMEGA_dot_3_LSB; index += 24; gal_eph.BGD_E1E5a_5 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 10))); index += 10; gal_eph.E5a_HS = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 2))); index += 2; gal_eph.E5a_DVS = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1))); return 0; } // ********************************************** // // MESSAGE TYPE MSM1 (COMPACT PSEUDORANGES) // // ********************************************** std::string Rtcm::print_MSM_1( const Gps_Ephemeris & gps_eph, const Galileo_Ephemeris & gal_eph, double obs_time, const std::map & pseudoranges, unsigned int ref_id, unsigned int clock_steering_indicator, unsigned int external_clock_indicator, int smooth_int, bool sync_flag, bool divergence_free, bool more_messages) { unsigned int msg_number = 1071; /// check for Galileo, it's 1091 std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gal_eph, obs_time, pseudoranges, ref_id, clock_steering_indicator, external_clock_indicator, smooth_int, sync_flag, divergence_free, more_messages); //std::cout << "MSM1 header: " << header << std::endl; std::string sat_data = Rtcm::get_MSM_1_content_sat_data(pseudoranges); //std::cout << "MSM1 sat data: " << sat_data << std::endl; std::string signal_data = Rtcm::get_MSM_1_content_signal_data(pseudoranges); //std::cout << "MSM1 signal data: " << signal_data << std::endl; std::string message = build_message(header + sat_data + signal_data); return message; } std::string Rtcm::get_MSM_header(unsigned int msg_number, const Gps_Ephemeris & gps_eph, const Galileo_Ephemeris & gal_eph, double obs_time, const std::map & pseudoranges, unsigned int ref_id, unsigned int clock_steering_indicator, unsigned int external_clock_indicator, int smooth_int, bool sync_flag, bool divergence_free, bool more_messages) { Rtcm::set_DF002(msg_number); Rtcm::set_DF003(ref_id); if(gps_eph.i_satellite_PRN != 0) { Rtcm::set_DF004(gps_eph, obs_time); } else { Rtcm::set_DF248(gal_eph, obs_time); } Rtcm::set_DF393(more_messages); Rtcm::set_DF409(0); // Issue of Data Station. 0: not utilized std::bitset<7> DF001_ = std::bitset<7>("0000000"); Rtcm::set_DF411(clock_steering_indicator); Rtcm::set_DF412(external_clock_indicator); Rtcm::set_DF417(divergence_free); Rtcm::set_DF418(smooth_int); Rtcm::set_DF394(pseudoranges); //std::cout << "Satellite mask DF394: " << DF394.to_string() << std::endl; Rtcm::set_DF395(pseudoranges); //std::cout << "Signal mask DF395: " << DF395.to_string() << std::endl; std::string header = DF002.to_string() + DF003.to_string(); if(gps_eph.i_satellite_PRN != 0) { header += DF004.to_string(); } else { header += DF248.to_string(); } header = header + DF393.to_string() + DF409.to_string() + DF001_.to_string() + DF411.to_string() + DF412.to_string() + DF418.to_string() + DF394.to_string() + DF395.to_string() + Rtcm::set_DF396(pseudoranges); return header; } std::string Rtcm::get_MSM_1_content_sat_data(const std::map & pseudoranges) { std::string sat_data; sat_data.clear(); Rtcm::set_DF394(pseudoranges); unsigned int num_satellites = DF394.count(); std::map pseudoranges_ordered; std::map::const_iterator gnss_synchro_iter; std::vector pos; std::vector::iterator it; for(gnss_synchro_iter = pseudoranges.begin(); gnss_synchro_iter != pseudoranges.end(); gnss_synchro_iter++) { pseudoranges_ordered.insert(std::pair(65 - gnss_synchro_iter->second.PRN, gnss_synchro_iter->second)); it = std::find (pos.begin(), pos.end(), 65 - gnss_synchro_iter->second.PRN); if (it == pos.end()) { pos.push_back(65 - gnss_synchro_iter->second.PRN); //std::cout << 65 - gnss_synchro_iter->second.PRN << std::endl; } } std::sort(pos.begin(), pos.end()); std::reverse(pos.begin(), pos.end()); for(unsigned int Nsat = 1; Nsat < num_satellites+1; Nsat++) { //std::cout << "pos:" << pos.at(Nsat-1) << std::endl; Rtcm::set_DF398(pseudoranges_ordered.at( pos.at(Nsat-1) )); sat_data += DF398.to_string(); } return sat_data; } std::string Rtcm::get_MSM_1_content_signal_data(const std::map & pseudoranges) { std::string signal_data; signal_data.clear(); boost::dynamic_bitset<> db(Rtcm::set_DF396(pseudoranges)); unsigned int Ncells = db.count(); //std::cout << "Ncells: " << Ncells << std::endl; std::map pseudoranges_ordered; std::map::const_iterator gnss_synchro_iter; std::vector pos; std::vector::iterator it; for(gnss_synchro_iter = pseudoranges.begin(); gnss_synchro_iter != pseudoranges.end(); gnss_synchro_iter++) { pseudoranges_ordered.insert(std::pair(65 - gnss_synchro_iter->second.PRN, gnss_synchro_iter->second)); it = std::find (pos.begin(), pos.end(), 65 - gnss_synchro_iter->second.PRN); if (it == pos.end()) { pos.push_back(65 - gnss_synchro_iter->second.PRN); } } std::sort(pos.begin(), pos.end()); std::reverse(pos.begin(), pos.end()); for(unsigned int cell = 1; cell < Ncells+1; cell++) { Rtcm::set_DF400(pseudoranges_ordered.at( pos.at(cell - 1) )); // GET THE RIGHT SYSTEM ORDER!! signal_data += DF400.to_string(); } return signal_data; } std::string Rtcm::get_MSM_4_content_sat_data(const std::map & pseudoranges) { //std::map::const_iterator gnss_synchro_iter; std::string data("Not implemented"); return data; } // ***************************************************************************************************** // // DATA FIELDS AS DEFINED AT RTCM STANDARD 10403.2 // // ***************************************************************************************************** int Rtcm::reset_data_fields() { //DF001.reset(); DF002.reset(); DF003.reset(); DF004.reset(); DF005.reset(); DF006.reset(); DF007.reset(); DF008.reset(); DF009.reset(); DF010.reset(); DF011.reset(); DF012.reset(); DF013.reset(); DF014.reset(); DF015.reset(); // Contents of GPS Satellite Ephemeris Data, Message Type 1019 DF071.reset(); DF076.reset(); DF077.reset(); DF078.reset(); DF079.reset(); DF081.reset(); DF082.reset(); DF083.reset(); DF084.reset(); DF085.reset(); DF086.reset(); DF087.reset(); DF088.reset(); DF089.reset(); DF090.reset(); DF091.reset(); DF092.reset(); DF093.reset(); DF094.reset(); DF095.reset(); DF096.reset(); DF097.reset(); DF098.reset(); DF099.reset(); DF100.reset(); DF101.reset(); DF102.reset(); DF103.reset(); DF137.reset(); DF248.reset(); // Contents of Galileo F/NAV Satellite Ephemeris Data, Message Type 1045 DF252.reset(); DF289.reset(); DF290.reset(); DF291.reset(); DF292.reset(); DF293.reset(); DF294.reset(); DF295.reset(); DF296.reset(); DF297.reset(); DF298.reset(); DF299.reset(); DF300.reset(); DF301.reset(); DF302.reset(); DF303.reset(); DF304.reset(); DF305.reset(); DF306.reset(); DF307.reset(); DF308.reset(); DF309.reset(); DF310.reset(); DF311.reset(); DF312.reset(); DF314.reset(); DF315.reset(); DF364.reset(); DF393.reset(); DF394.reset(); DF395.reset(); DF397.reset(); DF398.reset(); DF399.reset(); DF409.reset(); DF400.reset(); DF411.reset(); DF412.reset(); DF417.reset(); DF418.reset(); return 0; } int Rtcm::set_DF002(unsigned int message_number) { if (message_number > 4095) { LOG(WARNING) << "RTCM message number must be between 0 and 4095, but it has been set to " << message_number; } DF002 = std::bitset<12>(message_number); return 0; } int Rtcm::set_DF003(unsigned int ref_station_ID) { //unsigned int station_ID = ref_station_ID; if (ref_station_ID > 4095) { LOG(WARNING) << "RTCM reference station ID must be between 0 and 4095, but it has been set to " << ref_station_ID; } DF003 = std::bitset<12>(ref_station_ID); return 0; } int Rtcm::set_DF004(const Gps_Ephemeris & gps_eph, double obs_time) { // TOW in milliseconds from the beginning of the GPS week, measured in GPS time unsigned long int tow = static_cast(std::round((obs_time + 604800 * static_cast(gps_eph.i_GPS_week % 1024)) * 1000)); if(tow > 604799999) { LOG(WARNING) << "To large TOW! Set to the last millisecond of the week"; tow = 604799999; } DF004 = std::bitset<30>(tow); return 0; } int Rtcm::set_DF005(bool sync_flag) { // 0 - No further GNSS observables referenced to the same Epoch Time will be transmitted. This enables the receiver to begin processing // the data immediately after decoding the message. // 1 - The next message will contain observables of another GNSS source referenced to the same Epoch Time. DF005 = std::bitset<1>(sync_flag); return 0; } int Rtcm::set_DF006(const std::map & pseudoranges) { //Number of satellites observed in current epoch unsigned short int nsats = 0; std::map::const_iterator pseudoranges_iter; for(pseudoranges_iter = pseudoranges.begin(); pseudoranges_iter != pseudoranges.end(); pseudoranges_iter++) { nsats++; } if (nsats > 31) { LOG(WARNING) << "The number of processed GPS satellites must be between 0 and 31, but it seems that you are processing " << nsats; nsats = 31; } DF006 = std::bitset<5>(nsats); return 0; } int Rtcm::set_DF007(bool divergence_free_smoothing_indicator) { // 0 - Divergence-free smoothing not used 1 - Divergence-free smoothing used DF007 = std::bitset<1>(divergence_free_smoothing_indicator); return 0; } int Rtcm::set_DF008(short int smoothing_interval) { DF008 = std::bitset<3>(smoothing_interval); return 0; } int Rtcm::set_DF009(const Gnss_Synchro & gnss_synchro) { unsigned int prn_ = gnss_synchro.PRN; if(prn_ > 31) { LOG(WARNING) << "GPS satellite ID must be between 0 and 31, but PRN " << prn_ << " was found"; } DF009 = std::bitset<6>(prn_); return 0; } int Rtcm::set_DF009(const Gps_Ephemeris & gps_eph) { unsigned int prn_ = gps_eph.i_satellite_PRN; if(prn_ > 31) { LOG(WARNING) << "GPS satellite ID must be between 0 and 31, but PRN " << prn_ << " was found"; } DF009 = std::bitset<6>(prn_); return 0; } int Rtcm::set_DF010(bool code_indicator) { DF010 = std::bitset<1>(code_indicator); return 0; } int Rtcm::set_DF011(const Gnss_Synchro & gnss_synchro) { double ambiguity = std::floor( gnss_synchro.Pseudorange_m / 299792.458 ); unsigned long int gps_L1_pseudorange = static_cast(std::round(( gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02 )); DF011 = std::bitset<24>(gps_L1_pseudorange); return 0; } int Rtcm::set_DF012(const Gnss_Synchro & gnss_synchro) { const double lambda = GPS_C_m_s / GPS_L1_FREQ_HZ; double L1_pseudorange = gnss_synchro.Pseudorange_m; double ambiguity = std::floor( gnss_synchro.Pseudorange_m / 299792.458 ); double gps_L1_pseudorange = std::round(( gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02 ); double gps_L1_pseudorange_c = static_cast(gps_L1_pseudorange) * 0.02 + ambiguity * 299792.458; double L1_phaserange_c = gnss_synchro.Carrier_phase_rads / GPS_TWO_PI; double L1_phaserange_c_r = std::fmod(L1_phaserange_c - gps_L1_pseudorange_c / lambda + 1500.0, 3000.0) - 1500.0; long int gps_L1_phaserange_minus_L1_pseudorange = static_cast(std::round(L1_phaserange_c_r * lambda / 0.0005 )); DF012 = std::bitset<20>(gps_L1_phaserange_minus_L1_pseudorange); return 0; } int Rtcm::set_DF014(const Gnss_Synchro & gnss_synchro) { unsigned int gps_L1_pseudorange_ambiguity = static_cast(std::floor(gnss_synchro.Pseudorange_m / 299792.458)); DF014 = std::bitset<8>(gps_L1_pseudorange_ambiguity); return 0; } int Rtcm::set_DF015(const Gnss_Synchro & gnss_synchro) { double CN0_dB_Hz_est = gnss_synchro.CN0_dB_hz; if (CN0_dB_Hz_est > 63.75) { CN0_dB_Hz_est = 63.75; } unsigned int CN0_dB_Hz = static_cast(std::round(CN0_dB_Hz_est / 0.25 )); DF015 = std::bitset<8>(CN0_dB_Hz); return 0; } int Rtcm::set_DF021() { unsigned short int itfr_year = 0; DF021 = std::bitset<6>(itfr_year); return 0; } int Rtcm::set_DF022(bool gps_indicator) { DF022 = std::bitset<1>(gps_indicator); return 0; } int Rtcm::set_DF023(bool glonass_indicator) { DF023 = std::bitset<1>(glonass_indicator); return 0; } int Rtcm::set_DF024(bool galileo_indicator) { DF024 = std::bitset<1>(galileo_indicator); return 0; } int Rtcm::set_DF025(double antenna_ECEF_X_m) { long long int ant_ref_x = static_cast(std::round( antenna_ECEF_X_m * 10000)); DF025 = std::bitset<38>(ant_ref_x); return 0; } int Rtcm::set_DF026(double antenna_ECEF_Y_m) { long long int ant_ref_y = static_cast(std::round( antenna_ECEF_Y_m * 10000)); DF026 = std::bitset<38>(ant_ref_y); return 0; } int Rtcm::set_DF027(double antenna_ECEF_Z_m) { long long int ant_ref_z = static_cast(std::round( antenna_ECEF_Z_m * 10000)); DF027 = std::bitset<38>(ant_ref_z); return 0; } int Rtcm::set_DF071(const Gps_Ephemeris & gps_eph) { unsigned int iode = static_cast(gps_eph.d_IODE_SF2); DF071 = std::bitset<8>(iode); return 0; } int Rtcm::set_DF076(const Gps_Ephemeris & gps_eph) { unsigned int week_number = static_cast(gps_eph.i_GPS_week); DF076 = std::bitset<10>(week_number); return 0; } int Rtcm::set_DF077(const Gps_Ephemeris & gps_eph) { unsigned short int ura = static_cast(gps_eph.i_SV_accuracy); DF077 = std::bitset<4>(ura); return 0; } int Rtcm::set_DF078(const Gps_Ephemeris & gps_eph) { unsigned short int code_on_L2 = static_cast(gps_eph.i_code_on_L2); DF078 = std::bitset<2>(code_on_L2); return 0; } int Rtcm::set_DF079(const Gps_Ephemeris & gps_eph) { unsigned int idot = static_cast(std::round(gps_eph.d_IDOT / I_DOT_LSB )); DF079 = std::bitset<14>(idot); return 0; } int Rtcm::set_DF080(const Gps_Ephemeris & gps_eph) { unsigned short int iode = static_cast(gps_eph.d_IODE_SF2); DF080 = std::bitset<8>(iode); return 0; } int Rtcm::set_DF081(const Gps_Ephemeris & gps_eph) { unsigned int toc = static_cast(std::round(gps_eph.d_Toc / T_OC_LSB )); DF081 = std::bitset<16>(toc); return 0; } int Rtcm::set_DF082(const Gps_Ephemeris & gps_eph) { short int af2 = static_cast(std::round(gps_eph.d_A_f2 / A_F2_LSB )); DF082 = std::bitset<8>(af2); return 0; } int Rtcm::set_DF083(const Gps_Ephemeris & gps_eph) { int af1 = static_cast(std::round(gps_eph.d_A_f1 / A_F1_LSB )); DF083 = std::bitset<16>(af1); return 0; } int Rtcm::set_DF084(const Gps_Ephemeris & gps_eph) { long int af0 = static_cast(std::round(gps_eph.d_A_f0 / A_F0_LSB )); DF084 = std::bitset<22>(af0); return 0; } int Rtcm::set_DF085(const Gps_Ephemeris & gps_eph) { unsigned int iodc = static_cast(gps_eph.d_IODC); DF085 = std::bitset<10>(iodc); return 0; } int Rtcm::set_DF086(const Gps_Ephemeris & gps_eph) { int crs = static_cast(std::round(gps_eph.d_Crs / C_RS_LSB )); DF086 = std::bitset<16>(crs); return 0; } int Rtcm::set_DF087(const Gps_Ephemeris & gps_eph) { int delta_n = static_cast(std::round(gps_eph.d_Delta_n / DELTA_N_LSB )); DF087 = std::bitset<16>(delta_n); return 0; } int Rtcm::set_DF088(const Gps_Ephemeris & gps_eph) { long int m0 = static_cast(std::round(gps_eph.d_M_0 / M_0_LSB )); DF088 = std::bitset<32>(m0); return 0; } int Rtcm::set_DF089(const Gps_Ephemeris & gps_eph) { int cuc = static_cast(std::round(gps_eph.d_Cuc / C_UC_LSB )); DF089 = std::bitset<16>(cuc); return 0; } int Rtcm::set_DF090(const Gps_Ephemeris & gps_eph) { unsigned long int ecc = static_cast(std::round(gps_eph.d_e_eccentricity / E_LSB )); DF090 = std::bitset<32>(ecc); return 0; } int Rtcm::set_DF091(const Gps_Ephemeris & gps_eph) { int cus = static_cast(std::round(gps_eph.d_Cus / C_US_LSB )); DF091 = std::bitset<16>(cus); return 0; } int Rtcm::set_DF092(const Gps_Ephemeris & gps_eph) { unsigned long int sqr_a = static_cast(std::round(gps_eph.d_sqrt_A / SQRT_A_LSB )); DF092 = std::bitset<32>(sqr_a); return 0; } int Rtcm::set_DF093(const Gps_Ephemeris & gps_eph) { unsigned int toe = static_cast(std::round(gps_eph.d_Toe / T_OE_LSB )); DF093 = std::bitset<16>(toe); return 0; } int Rtcm::set_DF094(const Gps_Ephemeris & gps_eph) { int cic = static_cast(std::round(gps_eph.d_Cic / C_IC_LSB )); DF094 = std::bitset<16>(cic); return 0; } int Rtcm::set_DF095(const Gps_Ephemeris & gps_eph) { long int Omega0 = static_cast(std::round(gps_eph.d_OMEGA0 / OMEGA_0_LSB )); DF095 = std::bitset<32>(Omega0); return 0; } int Rtcm::set_DF096(const Gps_Ephemeris & gps_eph) { int cis = static_cast(std::round(gps_eph.d_Cis / C_IS_LSB )); DF096 = std::bitset<16>(cis); return 0; } int Rtcm::set_DF097(const Gps_Ephemeris & gps_eph) { long int i0 = static_cast(std::round(gps_eph.d_i_0 / I_0_LSB )); DF097 = std::bitset<32>(i0); return 0; } int Rtcm::set_DF098(const Gps_Ephemeris & gps_eph) { int crc = static_cast(std::round(gps_eph.d_Crc / C_RC_LSB )); DF098 = std::bitset<16>(crc); return 0; } int Rtcm::set_DF099(const Gps_Ephemeris & gps_eph) { long int omega = static_cast(std::round(gps_eph.d_OMEGA / OMEGA_LSB )); DF099 = std::bitset<32>(omega); return 0; } int Rtcm::set_DF100(const Gps_Ephemeris & gps_eph) { long int omegadot = static_cast(std::round(gps_eph.d_OMEGA_DOT / OMEGA_DOT_LSB )); DF100 = std::bitset<24>(omegadot); return 0; } int Rtcm::set_DF101(const Gps_Ephemeris & gps_eph) { short int tgd = static_cast(std::round(gps_eph.d_TGD / T_GD_LSB )); DF101 = std::bitset<8>(tgd); return 0; } int Rtcm::set_DF102(const Gps_Ephemeris & gps_eph) { unsigned short int sv_heath = static_cast(gps_eph.i_SV_health); DF102 = std::bitset<6>(sv_heath); return 0; } int Rtcm::set_DF103(const Gps_Ephemeris & gps_eph) { DF103 = std::bitset<1>(gps_eph.b_L2_P_data_flag); return 0; } int Rtcm::set_DF137(const Gps_Ephemeris & gps_eph) { DF137 = std::bitset<1>(gps_eph.b_fit_interval_flag); return 0; } int Rtcm::set_DF248(const Galileo_Ephemeris & gal_eph, double obs_time) { // TOW in milliseconds from the beginning of the Galileo week, measured in Galileo time unsigned long int tow = static_cast(std::round((obs_time + 604800 * static_cast(gal_eph.WN_5)) * 1000)); if(tow > 604799999) { LOG(WARNING) << "To large TOW! Set to the last millisecond of the week"; tow = 604799999; } DF248 = std::bitset<30>(tow); return 0; } int Rtcm::set_DF252(const Galileo_Ephemeris & gal_eph) { unsigned int prn_ = gal_eph.i_satellite_PRN; if(prn_ > 63) { LOG(WARNING) << "Galileo satellite ID must be between 0 and 63, but PRN " << prn_ << " was found"; } DF252 = std::bitset<6>(prn_); return 0; } int Rtcm::set_DF289(const Galileo_Ephemeris & gal_eph) { unsigned int galileo_week_number = static_cast(gal_eph.WN_5); if(galileo_week_number > 4095) { LOG(WARNING) << "Error decoding Galileo week number (it has a 4096 roll-off, but " << galileo_week_number << " was detected)"; } DF289 = std::bitset<12>(galileo_week_number); return 0; } int Rtcm::set_DF290(const Galileo_Ephemeris & gal_eph) { unsigned int iod_nav = static_cast(gal_eph.IOD_nav_1); if(iod_nav > 1023) { LOG(WARNING) << "Error decoding Galileo IODnav (it has a max of 1023, but " << iod_nav << " was detected)"; } DF290 = std::bitset<10>(iod_nav); return 0; } int Rtcm::set_DF291(const Galileo_Ephemeris & gal_eph) { unsigned short int SISA = static_cast(gal_eph.SISA_3); //SISA = 0; // SIS Accuracy, data content definition not given in Galileo OS SIS ICD, Issue 1.1, Sept 2010 DF291 = std::bitset<8>(SISA); return 0; } int Rtcm::set_DF292(const Galileo_Ephemeris & gal_eph) { int idot = static_cast(std::round(gal_eph.iDot_2 / FNAV_idot_2_LSB)); DF292 = std::bitset<14>(idot); return 0; } int Rtcm::set_DF293(const Galileo_Ephemeris & gal_eph) { unsigned int toc = static_cast(gal_eph.t0c_4); if(toc > 604740) { LOG(WARNING) << "Error decoding Galileo ephemeris time (max of 604740, but " << toc << " was detected)"; } DF293 = std::bitset<14>(toc); return 0; } int Rtcm::set_DF294(const Galileo_Ephemeris & gal_eph) { short int af2 = static_cast(std::round(gal_eph.af2_4 / FNAV_af2_1_LSB)); DF294 = std::bitset<6>(af2); return 0; } int Rtcm::set_DF295(const Galileo_Ephemeris & gal_eph) { long int af1 = static_cast(std::round(gal_eph.af1_4 / FNAV_af1_1_LSB)); DF295 = std::bitset<21>(af1); return 0; } int Rtcm::set_DF296(const Galileo_Ephemeris & gal_eph) { long int af0 = static_cast(std::round(gal_eph.af0_4 / FNAV_af0_1_LSB)); DF296 = std::bitset<31>(af0); return 0; } int Rtcm::set_DF297(const Galileo_Ephemeris & gal_eph) { int crs = static_cast(std::round(gal_eph.C_rs_3 / FNAV_Crs_3_LSB)); DF297 = std::bitset<16>(crs); return 0; } int Rtcm::set_DF298(const Galileo_Ephemeris & gal_eph) { int delta_n = static_cast(std::round(gal_eph.delta_n_3 / FNAV_deltan_3_LSB)); DF298 = std::bitset<16>(delta_n); return 0; } int Rtcm::set_DF299(const Galileo_Ephemeris & gal_eph) { long int m0 = static_cast(std::round(gal_eph.M0_1 / FNAV_M0_2_LSB)); DF299 = std::bitset<32>(m0); return 0; } int Rtcm::set_DF300(const Galileo_Ephemeris & gal_eph) { int cuc = static_cast(std::round(gal_eph.C_uc_3 / FNAV_Cuc_3_LSB)); DF300 = std::bitset<16>(cuc); return 0; } int Rtcm::set_DF301(const Galileo_Ephemeris & gal_eph) { unsigned long int ecc = static_cast(std::round(gal_eph.e_1 / FNAV_e_2_LSB)); DF301 = std::bitset<32>(ecc); return 0; } int Rtcm::set_DF302(const Galileo_Ephemeris & gal_eph) { int cus = static_cast(std::round(gal_eph.C_us_3 / FNAV_Cus_3_LSB)); DF302 = std::bitset<16>(cus); return 0; } int Rtcm::set_DF303(const Galileo_Ephemeris & gal_eph) { unsigned long int sqr_a = static_cast(std::round(gal_eph.A_1 / FNAV_a12_2_LSB)); DF303 = std::bitset<32>(sqr_a); return 0; } int Rtcm::set_DF304(const Galileo_Ephemeris & gal_eph) { unsigned int toe = static_cast(std::round(gal_eph.t0e_1 / FNAV_t0e_3_LSB)); DF304 = std::bitset<14>(toe); return 0; } int Rtcm::set_DF305(const Galileo_Ephemeris & gal_eph) { int cic = static_cast(std::round(gal_eph.C_ic_4 / FNAV_Cic_4_LSB)); DF305 = std::bitset<16>(cic); return 0; } int Rtcm::set_DF306(const Galileo_Ephemeris & gal_eph) { long int Omega0 = static_cast(std::round(gal_eph.OMEGA_0_2 / FNAV_omega0_2_LSB)); DF306 = std::bitset<32>(Omega0); return 0; } int Rtcm::set_DF307(const Galileo_Ephemeris & gal_eph) { int cis = static_cast(std::round(gal_eph.C_is_4 / FNAV_Cis_4_LSB)); DF307 = std::bitset<16>(cis); return 0; } int Rtcm::set_DF308(const Galileo_Ephemeris & gal_eph) { long int i0 = static_cast(std::round(gal_eph.i_0_2 / FNAV_i0_3_LSB)); DF308 = std::bitset<32>(i0); return 0; } int Rtcm::set_DF309(const Galileo_Ephemeris & gal_eph) { int crc = static_cast(std::round(gal_eph.C_rc_3 / FNAV_Crc_3_LSB)); DF309 = std::bitset<16>(crc); return 0; } int Rtcm::set_DF310(const Galileo_Ephemeris & gal_eph) { int omega = static_cast(std::round(gal_eph.omega_2 / FNAV_omega0_2_LSB)); DF310 = std::bitset<32>(omega); return 0; } int Rtcm::set_DF311(const Galileo_Ephemeris & gal_eph) { long int Omegadot = static_cast(std::round(gal_eph.OMEGA_dot_3 / FNAV_omegadot_2_LSB)); DF311 = std::bitset<24>(Omegadot); return 0; } int Rtcm::set_DF312(const Galileo_Ephemeris & gal_eph) { int bdg_E1_E5a = static_cast(std::round(gal_eph.BGD_E1E5a_5 / FNAV_BGD_1_LSB)); DF312 = std::bitset<10>(bdg_E1_E5a); return 0; } int Rtcm::set_DF313(const Galileo_Ephemeris & gal_eph) { unsigned int bdg_E5b_E1 = static_cast(std::round(gal_eph.BGD_E1E5b_5 )); //bdg_E5b_E1 = 0; //reserved DF313 = std::bitset<10>(bdg_E5b_E1); return 0; } int Rtcm::set_DF314(const Galileo_Ephemeris & gal_eph) { DF314 = std::bitset<2>(gal_eph.E5a_HS); return 0; } int Rtcm::set_DF315(const Galileo_Ephemeris & gal_eph) { DF315 = std::bitset<1>(gal_eph.E5a_DVS); return 0; } int Rtcm::set_DF393(bool more_messages) { DF393 = std::bitset<1>(more_messages); return 0; } int Rtcm::set_DF394(const std::map & gnss_synchro) { DF394.reset(); std::map::const_iterator gnss_synchro_iter; unsigned int mask_position; for(gnss_synchro_iter = gnss_synchro.begin(); gnss_synchro_iter != gnss_synchro.end(); gnss_synchro_iter++) { mask_position = 64 - gnss_synchro_iter->second.PRN; DF394.set(mask_position, true); } return 0; } int Rtcm::set_DF395(const std::map & gnss_synchro) { DF395.reset(); if(gnss_synchro.size() == 0) { return 1; } std::map::const_iterator gnss_synchro_iter; std::string sig; unsigned int mask_position; for(gnss_synchro_iter = gnss_synchro.begin(); gnss_synchro_iter != gnss_synchro.end(); gnss_synchro_iter++) { std::string sig_(gnss_synchro_iter->second.Signal); sig = sig_.substr(0,2); std::string sys(&gnss_synchro_iter->second.System, 1); if ((sig.compare("1C") == 0) && (sys.compare("G") == 0 ) ) { mask_position = 32 - 2; DF395.set(mask_position, true); } if ((sig.compare("2S") == 0) && (sys.compare("G") == 0 ) ) { mask_position = 32 - 15; DF395.set(mask_position, true); } if ((sig.compare("5X") == 0) && (sys.compare("G") == 0 ) ) { mask_position = 32 - 24; DF395.set(mask_position, true); } if ((sig.compare("1B") == 0) && (sys.compare("E") == 0 ) ) { mask_position = 32 - 4; DF395.set(mask_position, true); } if ((sig.compare("5X") == 0) && (sys.compare("E") == 0 ) ) { mask_position = 32 - 24; DF395.set(mask_position, true); } if ((sig.compare("7X") == 0) && (sys.compare("E") == 0 ) ) { mask_position = 32 - 16; DF395.set(mask_position, true); } } return 0; } std::string Rtcm::set_DF396(const std::map & pseudoranges) { std::string DF396; std::map::const_iterator pseudoranges_iter; Rtcm::set_DF394(pseudoranges); Rtcm::set_DF395(pseudoranges); unsigned int num_signals = DF395.count(); unsigned int num_satellites = DF394.count(); if ((num_signals == 0) || (num_satellites == 0)) { std::string s(""); return s; } std::vector > matrix(num_signals, std::vector()); std::string sig; std::vector list_of_sats; std::vector list_of_signals; for(pseudoranges_iter = pseudoranges.begin(); pseudoranges_iter != pseudoranges.end(); pseudoranges_iter++) { list_of_sats.push_back(pseudoranges_iter->second.PRN); std::string sig_(pseudoranges_iter->second.Signal); sig = sig_.substr(0,2); std::string sys(&pseudoranges_iter->second.System, 1); if ((sig.compare("1C") == 0) && (sys.compare("G") == 0 ) ) { list_of_signals.push_back(32 - 2); } if ((sig.compare("2S") == 0) && (sys.compare("G") == 0 ) ) { list_of_signals.push_back(32 - 15); } if ((sig.compare("5X") == 0) && (sys.compare("G") == 0 ) ) { list_of_signals.push_back(32 - 24); } if ((sig.compare("1B") == 0) && (sys.compare("E") == 0 ) ) { list_of_signals.push_back(32 - 4); } if ((sig.compare("5X") == 0) && (sys.compare("E") == 0 ) ) { list_of_signals.push_back(32 - 24); } if ((sig.compare("7X") == 0) && (sys.compare("E") == 0 ) ) { list_of_signals.push_back(32 - 16); } } std::sort( list_of_sats.begin(), list_of_sats.end() ); list_of_sats.erase( std::unique( list_of_sats.begin(), list_of_sats.end() ), list_of_sats.end() ); std::sort( list_of_signals.begin(), list_of_signals.end() ); std::reverse(list_of_signals.begin(), list_of_signals.end()); list_of_signals.erase( std::unique( list_of_signals.begin(), list_of_signals.end() ), list_of_signals.end() ); //std::cout << "List of signals: " << list_of_signals.at(0) << " " << list_of_signals.at(1) << std::endl; // fill the matrix for(unsigned int row = 0; row < num_signals; row++) { for(unsigned int sat = 0; sat < num_satellites; sat++) { for(pseudoranges_iter = pseudoranges.begin(); pseudoranges_iter != pseudoranges.end(); pseudoranges_iter++) { std::string sig_(pseudoranges_iter->second.Signal); sig = sig_.substr(0,2); std::string sys(&pseudoranges_iter->second.System, 1); if ((sig.compare("1C") == 0) && (sys.compare("G") == 0 ) && (list_of_signals.at(row) == 32 - 2)) { if(pseudoranges_iter->second.PRN == list_of_sats.at(sat)) { matrix[row].push_back(true); } } else { if((pseudoranges_iter->second.PRN == list_of_sats.at(sat)) && (list_of_signals.at(row) == 32 - 2) ) { matrix[row].push_back(false); } } if ((sig.compare("2S") == 0) && (sys.compare("G") == 0 ) && (list_of_signals.at(row) == 32 - 15)) { if(pseudoranges_iter->second.PRN == list_of_sats.at(sat)) { matrix[row].push_back(true); } } else { if((pseudoranges_iter->second.PRN == list_of_sats.at(sat)) && (list_of_signals.at(row) == 32 - 15) ) { matrix[row].push_back(false); } } if ((sig.compare("5X") == 0) && (sys.compare("G") == 0 ) && (list_of_signals.at(row) == 32 - 24)) { if(pseudoranges_iter->second.PRN == list_of_sats.at(sat)) { matrix[row].push_back(true); } } else { if((pseudoranges_iter->second.PRN == list_of_sats.at(sat)) && (list_of_signals.at(row) == 32 - 24) ) { matrix[row].push_back(false); } } if ((sig.compare("1B") == 0) && (sys.compare("E") == 0 ) && (list_of_signals.at(row) == 32 - 4)) { if(pseudoranges_iter->second.PRN == list_of_sats.at(sat)) { matrix[row].push_back(true); } } else { if((pseudoranges_iter->second.PRN == list_of_sats.at(sat)) && (list_of_signals.at(row) == 32 - 4) ) { matrix[row].push_back(false); } } if ((sig.compare("5X") == 0) && (sys.compare("E") == 0 ) && (list_of_signals.at(row) == 32 - 24)) { if(pseudoranges_iter->second.PRN == list_of_sats.at(sat)) { matrix[row].push_back(true); } } else { if((pseudoranges_iter->second.PRN == list_of_sats.at(sat)) && (list_of_signals.at(row) == 32 - 24) ) { matrix[row].push_back(false); } } if ((sig.compare("7X") == 0) && (sys.compare("E") == 0 ) && (list_of_signals.at(row) == 32 - 16)) { if(pseudoranges_iter->second.PRN == list_of_sats.at(sat)) { matrix[row].push_back(true); } } else { if((pseudoranges_iter->second.PRN == list_of_sats.at(sat)) && (list_of_signals.at(row) == 32 - 16) ) { matrix[row].push_back(false); } } } } } // write the matrix column-wise DF396.clear(); for(unsigned int col = 0; col < num_satellites; col++) { for(unsigned int row = 0; row < num_signals; row++) { std::string ss; if(matrix[row].at(col)) { ss = "1"; } else { ss = "0"; } DF396 += ss; } } //std::cout << "DF396: " << DF396 << std::endl; return DF396; } int Rtcm::set_DF397(const Gnss_Synchro & gnss_synchro) { double meters_to_miliseconds = GPS_C_m_s * 0.001; double rough_range_s = std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10; unsigned int int_ms = 0; if (rough_range_s == 0.0) { int_ms = 255; } else if((rough_range_s < 0.0) || (rough_range_s > meters_to_miliseconds * 255.0)) { int_ms = 255; } else { int_ms = static_cast(std::floor(rough_range_s / meters_to_miliseconds / TWO_N10) + 0.5) >> 10; } DF397 = std::bitset<8>(int_ms); return 0; } int Rtcm::set_DF398(const Gnss_Synchro & gnss_synchro) { double meters_to_miliseconds = GPS_C_m_s * 0.001; double rough_range_ms = std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10; DF398 = std::bitset<10>(static_cast(rough_range_ms)); return 0; } int Rtcm::set_DF399(const Gnss_Synchro & gnss_synchro) { double lambda; std::string sig_(gnss_synchro.Signal); std::string sig = sig_.substr(0,2); if (sig.compare("1C") == 0 ) { lambda = GPS_C_m_s / GPS_L1_FREQ_HZ; } if (sig.compare("2S") == 0 ) { lambda = GPS_C_m_s / GPS_L2_FREQ_HZ; } if (sig.compare("5X") == 0 ) { lambda = GPS_C_m_s / Galileo_E5a_FREQ_HZ; } if (sig.compare("1B") == 0 ) { lambda = GPS_C_m_s / Galileo_E1_FREQ_HZ; } double rough_phase_range_ms = std::round(- gnss_synchro.Carrier_Doppler_hz / lambda); DF399 = std::bitset<14>(static_cast(rough_phase_range_ms)); return 0; } int Rtcm::set_DF400(const Gnss_Synchro & gnss_synchro) { double meters_to_miliseconds = GPS_C_m_s * 0.001; double rough_range_s = std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10; double psrng_s; double lambda; std::string sig_(gnss_synchro.Signal); std::string sig = sig_.substr(0,2); if (sig.compare("1C") == 0 ) { lambda = GPS_C_m_s / GPS_L1_FREQ_HZ; } if (sig.compare("2S") == 0 ) { lambda = GPS_C_m_s / GPS_L2_FREQ_HZ; } if (sig.compare("5X") == 0 ) { lambda = GPS_C_m_s / Galileo_E5a_FREQ_HZ; } if (sig.compare("1B") == 0 ) { lambda = GPS_C_m_s / Galileo_E1_FREQ_HZ; } psrng_s = (gnss_synchro.Carrier_phase_rads / GPS_TWO_PI) * lambda - rough_range_s; DF400 = std::bitset<15>(static_cast( psrng_s)); // Units!! return 0; } int Rtcm::set_DF409(unsigned int iods) { DF409 = std::bitset<3>(iods); return 0; } int Rtcm::set_DF411(unsigned int clock_steering_indicator) { DF411 = std::bitset<2>(clock_steering_indicator); return 0; } int Rtcm::set_DF412(unsigned int external_clock_indicator) { DF412 = std::bitset<2>(external_clock_indicator); return 0; } int Rtcm::set_DF417(bool using_divergence_free_smoothing) { DF417 = std::bitset<1>(using_divergence_free_smoothing); return 0; } int Rtcm::set_DF418(int carrier_smoothing_interval_s) { unsigned int smoothing_int = abs(carrier_smoothing_interval_s); if(carrier_smoothing_interval_s < 0) { DF418 = std::bitset<3>("111"); } else { if(carrier_smoothing_interval_s == 0) { DF418 = std::bitset<3>("000"); } else if(carrier_smoothing_interval_s < 30) { DF418 = std::bitset<3>("001"); } else if(carrier_smoothing_interval_s < 60) { DF418 = std::bitset<3>("010"); } else if(carrier_smoothing_interval_s < 120) { DF418 = std::bitset<3>("011"); } else if(carrier_smoothing_interval_s < 240) { DF418 = std::bitset<3>("100"); } else if(carrier_smoothing_interval_s < 480) { DF418 = std::bitset<3>("101"); } else { DF418 = std::bitset<3>("110"); } } return 0; }