/*!
* \file tracking_discriminators.h
* \brief Interface of a library with a set of code tracking and carrier
* tracking discriminators.
* \authors
* - Javier Arribas, 2011. jarribas(at)cttc.es
*
- Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
*
* Library with a set of code tracking and carrier tracking discriminators
* that is used by the tracking algorithms.
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_TRACKING_DISCRIMINATORS_H
#define GNSS_SDR_TRACKING_DISCRIMINATORS_H
#include
#include
/** \addtogroup Tracking
* \{ */
/** \addtogroup Tracking_libs
* \{ */
/*! brief FLL four quadrant arctan discriminator
*
* FLL four quadrant arctan discriminator:
* \f{equation}
* \frac{\phi_2-\phi_1}{t_2-t1}=\frac{ATAN2(cross,dot)}{t_1-t_2},
* \f}
* where \f$cross=I_{PS1}Q_{PS2}-I_{PS2}Q_{PS1}\f$ and \f$dot=I_{PS1}I_{PS2}+Q_{PS1}Q_{PS2}\f$,
* \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
*/
double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2);
/*
* FLL differential arctan discriminator:
* \f{equation}
* e_{atan}(k)=\frac{1}{t_1-t_2}\text{phase_unwrap}(\tan^-1(\frac{Q(k)}{I(k)})-\tan^-1(\frac{Q(k-1)}{I(k-1)}))
* \f}
* The output is in [radians/second].
*/
double fll_diff_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2);
/*! \brief Phase unwrapping function, input is [rad]
*/
double phase_unwrap(double phase_rad);
/*! \brief PLL four quadrant arctan discriminator
*
* PLL four quadrant arctan discriminator:
* \f{equation}
* \phi=ATAN2(Q_{PS},I_{PS}),
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
double pll_four_quadrant_atan(gr_complex prompt_s1);
/*! \brief PLL Costas loop two quadrant arctan discriminator
*
* PLL Costas loop two quadrant arctan discriminator:
* \f{equation}
* \phi=ATAN\left(\frac{Q_{PS}}{I_{PS}}\right),
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
double pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
/*! \brief DLL Noncoherent Early minus Late envelope normalized discriminator
*
* DLL Noncoherent Early minus Late envelope normalized discriminator:
* \f{equation}
* error = \frac{y_{intercept} - \text{slope} * \epsilon}{\text{slope}} \frac{E-L}{E+L},
* \f}
* where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and
* \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
*/
double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1, float spc = 0.5, float slope = 1.0, float y_intercept = 1.0);
/*! \brief DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator
*
* DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator, using the outputs
* of four correlators, Very Early (VE), Early (E), Late (L) and Very Late (VL):
* \f{equation}
* error=\frac{E-L}{E+L},
* \f}
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
*/
double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1);
template
double CalculateSlope(Fun &&f, double x)
{
static constexpr double dx = 1e-6;
return (f(x + dx / 2.0) - f(x - dx / 2.0)) / dx;
}
template
double CalculateSlopeAbs(Fun &&f, double x)
{
static constexpr double dx = 1e-6;
return (std::abs(f(x + dx / 2.0)) - std::abs(f(x - dx / 2.0))) / dx;
}
template
double GetYIntercept(Fun &&f, double x)
{
double slope = CalculateSlope(f, x);
double y1 = f(x);
return y1 - slope * x;
}
template
double GetYInterceptAbs(Fun &&f, double x)
{
double slope = CalculateSlopeAbs(f, x);
double y1 = std::abs(f(x));
return y1 - slope * x;
}
// SinBocCorrelationFunction and CosBocCorrelationFunction from
// Sousa, F. and Nunes, F., "New Expressions for the Autocorrelation
// Function of BOC GNSS Signals", NAVIGATION - Journal of the Institute
// of Navigation, March 2013.
//
template
double SinBocCorrelationFunction(double offset_in_chips)
{
static constexpr int TWO_P = 2 * M / N;
double abs_tau = std::abs(offset_in_chips);
if (abs_tau > 1.0)
{
return 0.0;
}
int k = static_cast(std::ceil(TWO_P * abs_tau));
double sgn = ((k & 0x01) == 0 ? 1.0 : -1.0); // (-1)^k
return sgn * (2.0 * (k * k - k * TWO_P - k) / TWO_P + 1.0 +
(2 * TWO_P - 2 * k + 1) * abs_tau);
}
template
double CosBocCorrelationFunction(double offset_in_chips)
{
static constexpr int TWO_P = 2 * M / N;
double abs_tau = std::abs(offset_in_chips);
if (abs_tau > 1.0)
{
return 0.0;
}
int k = static_cast(std::floor(2.0 * TWO_P * abs_tau));
if ((k & 0x01) == 0) // k is even
{
double sgn = ((k >> 1) & 0x01 ? -1.0 : 1.0); // (-1)^(k/2)
return sgn * ((2 * k * TWO_P + 2 * TWO_P - k * k) / (2.0 * TWO_P) + (-2 * TWO_P + k - 1) * abs_tau);
}
else
{
double sgn = (((k + 1) >> 1) & 0x01 ? -1.0 : 1.0); // (-1)^((k+1)/2)
return sgn * ((k * k + 2 * k - 2 * k * TWO_P + 1) / (2.0 * TWO_P) + (2 * TWO_P - k - 2) * abs_tau);
}
}
/** \} */
/** \} */
#endif // GNSS_SDR_TRACKING_DISCRIMINATORS_H