/*!
* \file rtcm.cc
* \brief Implementation of RTCM 3.2 Standard
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "rtcm.h"
#include // for std::reverse
#include // std::chrono::seconds
#include // for std::fmod
#include // for strtol
#include // for std::stringstream
#include
#include // for to_upper_copy
#include
#include
#include
#include
using google::LogMessage;
DEFINE_int32(RTCM_Ref_Station_ID, 1234, "Reference Station ID in RTCM messages");
DEFINE_int32(RTCM_Port, 2101 , "TCP port of the RTCM message server");
// 2101 is the standard RTCM port according to the Internet Assigned Numbers Authority (IANA)
// https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
Rtcm::Rtcm()
{
Rtcm::reset_data_fields();
preamble = std::bitset<8>("11010011");
reserved_field = std::bitset<6>("000000");
rtcm_message_queue = std::make_shared< concurrent_queue >();
// for each server, do:
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), FLAGS_RTCM_Port);
servers.emplace_back(io_service, endpoint);
server_is_running = false;
}
Rtcm::~Rtcm()
{}
// *****************************************************************************************************
//
// TCP Server helper classes
//
// *****************************************************************************************************
void Rtcm::run_server()
{
std::cout << "Starting a TCP Server on port " << FLAGS_RTCM_Port << std::endl;
try
{
std::thread tq([&]{ std::make_shared(io_service, rtcm_message_queue, FLAGS_RTCM_Port)->do_read_queue(); });
tq.detach();
std::thread t([&]{ io_service.run(); });
server_is_running = true;
t.detach();
}
catch (std::exception& e)
{
std::cerr << "Exception: " << e.what() << "\n";
}
}
void Rtcm::stop_service()
{
io_service.stop();
}
void Rtcm::stop_server()
{
std::cout << "Stopping TCP Server on port " << FLAGS_RTCM_Port << std::endl;
rtcm_message_queue->push("Goodbye"); // this terminates tq
Rtcm::stop_service();
servers.front().close_server();
std::this_thread::sleep_for(std::chrono::seconds(1));
server_is_running = false;
}
void Rtcm::send_message(const std::string & msg)
{
rtcm_message_queue->push(msg);
}
bool Rtcm::is_server_running() const
{
return server_is_running;
}
// *****************************************************************************************************
//
// TRANSPORT LAYER AS DEFINED AT RTCM STANDARD 10403.2
//
// *****************************************************************************************************
std::string Rtcm::add_CRC (const std::string & message_without_crc) const
{
// ****** Computes Qualcomm CRC-24Q ******
boost::crc_optimal<24, 0x1864CFBu, 0x0, 0x0, false, false> CRC_RTCM;
// 1) Converts the string to a vector of unsigned char:
boost::dynamic_bitset frame_bits(message_without_crc);
std::vector bytes;
boost::to_block_range(frame_bits, std::back_inserter(bytes));
std::reverse(bytes.begin(), bytes.end());
// 2) Computes CRC
CRC_RTCM.process_bytes(bytes.data(), bytes.size());
std::bitset<24> crc_frame = std::bitset<24>(CRC_RTCM.checksum());
// 3) Builds the complete message
std::string complete_message = message_without_crc + crc_frame.to_string();
return bin_to_hex(complete_message);
}
bool Rtcm::check_CRC(const std::string & message) const
{
boost::crc_optimal<24, 0x1864CFBu, 0x0, 0x0, false, false> CRC_RTCM_CHECK;
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
// Check CRC
std::string crc = message_bin.substr(message_bin.length() - 24, 24);
std::bitset<24> read_crc = std::bitset<24>(crc);
std::string msg_without_crc = message_bin.substr(0, message_bin.length() - 24);
boost::dynamic_bitset frame_bits(msg_without_crc);
std::vector bytes;
boost::to_block_range(frame_bits, std::back_inserter(bytes));
std::reverse(bytes.begin(), bytes.end());
CRC_RTCM_CHECK.process_bytes(bytes.data(), bytes.size());
std::bitset<24> computed_crc = std::bitset<24>(CRC_RTCM_CHECK.checksum());
if(read_crc == computed_crc)
{
return true;
}
else
{
return false;
}
}
std::string Rtcm::bin_to_hex(const std::string& s) const
{
std::string s_aux;
std::stringstream ss;
int remainder = static_cast(std::fmod(s.length(), 4));
if (remainder != 0)
{
s_aux.assign(s, 0 , remainder);
boost::dynamic_bitset<> rembits(s_aux);
unsigned n = rembits.to_ulong();
ss << std::hex << n;
}
unsigned int start = std::max(remainder, 0);
for(unsigned int i = start; i < s.length() - 1; i = i + 4)
{
s_aux.assign(s, i, 4);
std::bitset<4> bs(s_aux);
unsigned n = bs.to_ulong();
ss << std::hex << n;
}
return boost::to_upper_copy(ss.str());
}
std::string Rtcm::hex_to_bin(const std::string& s) const
{
std::string s_aux;
s_aux.clear();
std::stringstream ss;
ss << s;
std::string s_lower = boost::to_upper_copy(ss.str());
for(unsigned int i = 0; i < s.length(); i++)
{
unsigned long int n;
std::istringstream(s_lower.substr(i,1)) >> std::hex >> n;
std::bitset<4> bs(n);
s_aux += bs.to_string();
}
return s_aux;
}
unsigned long int Rtcm::bin_to_uint(const std::string& s) const
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a unsigned long int";
return 0;
}
unsigned long int reading = strtoul(s.c_str(), NULL, 2);
return reading;
}
long int Rtcm::bin_to_int(const std::string& s) const
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a long int";
return 0;
}
long int reading;
// Handle negative numbers
if(s.substr(0,1).compare("0"))
{
// Computing two's complement
boost::dynamic_bitset<> original_bitset(s);
original_bitset.flip();
reading = - (original_bitset.to_ulong() + 1);
}
else
{
reading = strtol(s.c_str(), NULL, 2);
}
return reading;
}
double Rtcm::bin_to_double(const std::string& s) const
{
double reading;
if(s.length() > 64)
{
LOG(WARNING) << "Cannot convert to a double";
return 0;
}
long long int reading_int;
// Handle negative numbers
if(s.substr(0,1).compare("0"))
{
// Computing two's complement
boost::dynamic_bitset<> original_bitset(s);
original_bitset.flip();
std::string aux;
to_string(original_bitset, aux);
reading_int = - (strtoll(aux.c_str(), NULL, 2) + 1);
}
else
{
reading_int = strtoll(s.c_str(), NULL, 2);
}
reading = static_cast(reading_int);
return reading;
}
unsigned long int Rtcm::hex_to_uint(const std::string& s) const
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a unsigned long int";
return 0;
}
unsigned long int reading = strtoul(s.c_str(), NULL, 16);
return reading;
}
long int Rtcm::hex_to_int(const std::string& s) const
{
if(s.length() > 32)
{
LOG(WARNING) << "Cannot convert to a long int";
return 0;
}
long int reading = strtol(s.c_str(), NULL, 16);
return reading;
}
std::string Rtcm::build_message(const std::string & data) const
{
unsigned int msg_length_bits = data.length();
unsigned int msg_length_bytes = std::ceil(static_cast(msg_length_bits) / 8.0);
std::bitset<10> message_length = std::bitset<10>(msg_length_bytes);
unsigned int zeros_to_fill = 8 * msg_length_bytes - msg_length_bits;
std::string b(zeros_to_fill, '0');
std::string msg_content = data + b;
std::string msg_without_crc = preamble.to_string() +
reserved_field.to_string() +
message_length.to_string() +
msg_content;
return Rtcm::add_CRC(msg_without_crc);
}
// *****************************************************************************************************
//
// MESSAGES AS DEFINED AT RTCM STANDARD 10403.2
//
// *****************************************************************************************************
// ********************************************************
//
// MESSAGE TYPE 1001 (GPS L1 OBSERVATIONS)
//
// ********************************************************
std::bitset<64> Rtcm::get_MT1001_4_header(unsigned int msg_number, const Gps_Ephemeris & gps_eph, double obs_time, const std::map & pseudoranges,
unsigned int ref_id, unsigned int smooth_int, bool sync_flag, bool divergence_free)
{
unsigned int reference_station_id = ref_id; // Max: 4095
const std::map pseudoranges_ = pseudoranges;
bool synchronous_GNSS_flag = sync_flag;
bool divergence_free_smoothing_indicator = divergence_free;
unsigned int smoothing_interval = smooth_int;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF003(reference_station_id);
Rtcm::set_DF004(gps_eph, obs_time);
Rtcm::set_DF005(synchronous_GNSS_flag);
Rtcm::set_DF006(pseudoranges_);
Rtcm::set_DF007(divergence_free_smoothing_indicator);
Rtcm::set_DF008(smoothing_interval);
std::string header = DF002.to_string() +
DF003.to_string() +
DF004.to_string() +
DF005.to_string() +
DF006.to_string() +
DF007.to_string() +
DF008.to_string();
std::bitset<64> header_msg(header);
return header_msg;
}
std::bitset<58> Rtcm::get_MT1001_sat_content(const Gps_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF009(gnss_synchro);
Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF011(gnss_synchro);
Rtcm::set_DF012(gnss_synchro);
Rtcm::set_DF013(eph, obs_time, gnss_synchro);
std::string content = DF009.to_string() +
DF010.to_string() +
DF011.to_string() +
DF012.to_string() +
DF013.to_string();
std::bitset<58> content_msg(content);
return content_msg;
}
std::string Rtcm::print_MT1001(const Gps_Ephemeris & gps_eph, double obs_time, const std::map & pseudoranges)
{
unsigned int ref_id = static_cast(FLAGS_RTCM_Ref_Station_ID);
unsigned int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
//Get a map with GPS L1 only observations
std::map pseudorangesL1;
std::map::const_iterator pseudoranges_iter;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
std::string system_(pseudoranges_iter->second.System, 1);
std::string sig_(pseudoranges_iter->second.Signal);
if((system_.compare("G") == 0) && (sig_.compare("1C") == 0))
{
pseudorangesL1.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
}
std::bitset<64> header = Rtcm::get_MT1001_4_header(1001, gps_eph, obs_time, pseudorangesL1, ref_id, smooth_int, sync_flag, divergence_free);
std::string data = header.to_string();
for(pseudoranges_iter = pseudorangesL1.begin();
pseudoranges_iter != pseudorangesL1.end();
pseudoranges_iter++)
{
std::bitset<58> content = Rtcm::get_MT1001_sat_content(gps_eph, obs_time, pseudoranges_iter->second);
data += content.to_string();
}
return Rtcm::build_message(data);
}
// ********************************************************
//
// MESSAGE TYPE 1002 (EXTENDED GPS L1 OBSERVATIONS)
//
// ********************************************************
std::string Rtcm::print_MT1002(const Gps_Ephemeris & gps_eph, double obs_time, const std::map & pseudoranges)
{
unsigned int ref_id = static_cast(FLAGS_RTCM_Ref_Station_ID);
unsigned int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
//Get a map with GPS L1 only observations
std::map pseudorangesL1;
std::map::const_iterator pseudoranges_iter;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
std::string system_(pseudoranges_iter->second.System, 1);
std::string sig_(pseudoranges_iter->second.Signal);
if((system_.compare("G") == 0) && (sig_.compare("1C") == 0))
{
pseudorangesL1.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
}
std::bitset<64> header = Rtcm::get_MT1001_4_header(1002, gps_eph, obs_time, pseudorangesL1, ref_id, smooth_int, sync_flag, divergence_free);
std::string data = header.to_string();
for(pseudoranges_iter = pseudorangesL1.begin();
pseudoranges_iter != pseudorangesL1.end();
pseudoranges_iter++)
{
std::bitset<74> content = Rtcm::get_MT1002_sat_content(gps_eph, obs_time, pseudoranges_iter->second);
data += content.to_string();
}
return Rtcm::build_message(data);
}
std::bitset<74> Rtcm::get_MT1002_sat_content(const Gps_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF009(gnss_synchro);
Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF011(gnss_synchro);
Rtcm::set_DF012(gnss_synchro);
Rtcm::set_DF013(eph, obs_time, gnss_synchro);
std::string content = DF009.to_string() +
DF010.to_string() +
DF011.to_string() +
DF012.to_string() +
DF013.to_string() +
DF014.to_string() +
DF015.to_string();
std::bitset<74> content_msg(content);
return content_msg;
}
// ********************************************************
//
// MESSAGE TYPE 1003 (GPS L1 & L2 OBSERVATIONS)
//
// ********************************************************
std::string Rtcm::print_MT1003(const Gps_Ephemeris & ephL1, const Gps_CNAV_Ephemeris & ephL2, double obs_time, const std::map & pseudoranges)
{
unsigned int ref_id = static_cast(FLAGS_RTCM_Ref_Station_ID);
unsigned int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
//Get maps with GPS L1 and L2 observations
std::map pseudorangesL1;
std::map pseudorangesL2;
std::map::const_iterator pseudoranges_iter;
std::map::const_iterator pseudoranges_iter2;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
std::string system_(pseudoranges_iter->second.System, 1);
std::string sig_(pseudoranges_iter->second.Signal);
if((system_.compare("G") == 0) && (sig_.compare("1C") == 0))
{
pseudorangesL1.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
if((system_.compare("G") == 0) && (sig_.compare("2S") == 0))
{
pseudorangesL2.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
}
// Get common observables
std::vector< std::pair< Gnss_Synchro, Gnss_Synchro > > common_pseudoranges;
std::vector< std::pair< Gnss_Synchro, Gnss_Synchro > >::const_iterator common_pseudoranges_iter;
std::map pseudorangesL1_with_L2;
for(pseudoranges_iter = pseudorangesL1.begin();
pseudoranges_iter != pseudorangesL1.end();
pseudoranges_iter++)
{
unsigned int prn_ = pseudoranges_iter->second.PRN;
for(pseudoranges_iter2 = pseudorangesL2.begin();
pseudoranges_iter2 != pseudorangesL2.end();
pseudoranges_iter2++)
{
if(pseudoranges_iter2->second.PRN == prn_)
{
std::pair p;
Gnss_Synchro pr1 = pseudoranges_iter->second;
Gnss_Synchro pr2 = pseudoranges_iter2->second;
p = std::make_pair(pr1, pr2);
common_pseudoranges.push_back(p);
pseudorangesL1_with_L2.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
}
}
std::bitset<64> header = Rtcm::get_MT1001_4_header(1003, ephL1, obs_time, pseudorangesL1_with_L2, ref_id, smooth_int, sync_flag, divergence_free);
std::string data = header.to_string();
for(common_pseudoranges_iter = common_pseudoranges.begin();
common_pseudoranges_iter != common_pseudoranges.end();
common_pseudoranges_iter++)
{
std::bitset<101> content = Rtcm::get_MT1003_sat_content(ephL1, ephL2, obs_time, common_pseudoranges_iter->first, common_pseudoranges_iter->second);
data += content.to_string();
}
return Rtcm::build_message(data);
}
std::bitset<101> Rtcm::get_MT1003_sat_content(const Gps_Ephemeris & ephL1, const Gps_CNAV_Ephemeris & ephL2, double obs_time, const Gnss_Synchro & gnss_synchroL1, const Gnss_Synchro & gnss_synchroL2)
{
bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF009(gnss_synchroL1);
Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF011(gnss_synchroL1);
Rtcm::set_DF012(gnss_synchroL1);
Rtcm::set_DF013(ephL1, obs_time, gnss_synchroL1);
std::bitset<2> DF016_ = std::bitset<2>(0); // code indicator 0: C/A or L2C code 1: P(Y) code direct 2:P(Y) code cross-correlated 3: Correlated P/Y
Rtcm::set_DF017(gnss_synchroL1, gnss_synchroL2);
Rtcm::set_DF018(gnss_synchroL1, gnss_synchroL2);
Rtcm::set_DF019(ephL2, obs_time, gnss_synchroL2);
std::string content = DF009.to_string() +
DF010.to_string() +
DF011.to_string() +
DF012.to_string() +
DF013.to_string() +
DF016_.to_string() +
DF017.to_string() +
DF018.to_string() +
DF019.to_string();
std::bitset<101> content_msg(content);
return content_msg;
}
// ******************************************************************
//
// MESSAGE TYPE 1004 (EXTENDED GPS L1 & L2 OBSERVATIONS)
//
// ******************************************************************
std::string Rtcm::print_MT1004(const Gps_Ephemeris & ephL1, const Gps_CNAV_Ephemeris & ephL2, double obs_time, const std::map & pseudoranges)
{
unsigned int ref_id = static_cast(FLAGS_RTCM_Ref_Station_ID);
unsigned int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
//Get maps with GPS L1 and L2 observations
std::map pseudorangesL1;
std::map pseudorangesL2;
std::map::const_iterator pseudoranges_iter;
std::map::const_iterator pseudoranges_iter2;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
std::string system_(pseudoranges_iter->second.System, 1);
std::string sig_(pseudoranges_iter->second.Signal);
if((system_.compare("G") == 0) && (sig_.compare("1C") == 0))
{
pseudorangesL1.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
if((system_.compare("G") == 0) && (sig_.compare("2S") == 0))
{
pseudorangesL2.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
}
// Get common observables
std::vector< std::pair< Gnss_Synchro, Gnss_Synchro > > common_pseudoranges;
std::vector< std::pair< Gnss_Synchro, Gnss_Synchro > >::const_iterator common_pseudoranges_iter;
std::map pseudorangesL1_with_L2;
for(pseudoranges_iter = pseudorangesL1.begin();
pseudoranges_iter != pseudorangesL1.end();
pseudoranges_iter++)
{
unsigned int prn_ = pseudoranges_iter->second.PRN;
for(pseudoranges_iter2 = pseudorangesL2.begin();
pseudoranges_iter2 != pseudorangesL2.end();
pseudoranges_iter2++)
{
if(pseudoranges_iter2->second.PRN == prn_)
{
std::pair p;
Gnss_Synchro pr1 = pseudoranges_iter->second;
Gnss_Synchro pr2 = pseudoranges_iter2->second;
p = std::make_pair(pr1, pr2);
common_pseudoranges.push_back(p);
pseudorangesL1_with_L2.insert(std::pair(pseudoranges_iter->first, pseudoranges_iter->second));
}
}
}
std::bitset<64> header = Rtcm::get_MT1001_4_header(1004, ephL1, obs_time, pseudorangesL1_with_L2, ref_id, smooth_int, sync_flag, divergence_free);
std::string data = header.to_string();
for(common_pseudoranges_iter = common_pseudoranges.begin();
common_pseudoranges_iter != common_pseudoranges.end();
common_pseudoranges_iter++)
{
std::bitset<125> content = Rtcm::get_MT1004_sat_content(ephL1, ephL2, obs_time, common_pseudoranges_iter->first, common_pseudoranges_iter->second);
data += content.to_string();
}
return Rtcm::build_message(data);
}
std::bitset<125> Rtcm::get_MT1004_sat_content(const Gps_Ephemeris & ephL1, const Gps_CNAV_Ephemeris & ephL2, double obs_time, const Gnss_Synchro & gnss_synchroL1, const Gnss_Synchro & gnss_synchroL2)
{
bool code_indicator = false; // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF009(gnss_synchroL1);
Rtcm::set_DF010(code_indicator); // code indicator 0: C/A code 1: P(Y) code direct
Rtcm::set_DF011(gnss_synchroL1);
Rtcm::set_DF012(gnss_synchroL1);
Rtcm::set_DF013(ephL1, obs_time, gnss_synchroL1);
Rtcm::set_DF014(gnss_synchroL1);
Rtcm::set_DF015(gnss_synchroL1);
std::bitset<2> DF016_ = std::bitset<2>(0); // code indicator 0: C/A or L2C code 1: P(Y) code direct 2:P(Y) code cross-correlated 3: Correlated P/Y
Rtcm::set_DF017(gnss_synchroL1, gnss_synchroL2);
Rtcm::set_DF018(gnss_synchroL1, gnss_synchroL2);
Rtcm::set_DF019(ephL2, obs_time, gnss_synchroL2);
Rtcm::set_DF020(gnss_synchroL2);
std::string content = DF009.to_string() +
DF010.to_string() +
DF011.to_string() +
DF012.to_string() +
DF013.to_string() +
DF014.to_string() +
DF015.to_string() +
DF016_.to_string() +
DF017.to_string() +
DF018.to_string() +
DF019.to_string() +
DF020.to_string();
std::bitset<125> content_msg(content);
return content_msg;
}
// ********************************************************
//
// MESSAGE TYPE 1005 (STATION DESCRIPTION)
//
// ********************************************************
/* Stationary Antenna Reference Point, No Height Information
* Reference Station Id = 2003
GPS Service supported, but not GLONASS or Galileo
ARP ECEF-X = 1114104.5999 meters
ARP ECEF-Y = -4850729.7108 meters
ARP ECEF-Z = 3975521.4643 meters
Expected output: D3 00 13 3E D7 D3 02 02 98 0E DE EF 34 B4 BD 62
AC 09 41 98 6F 33 36 0B 98
*/
std::bitset<152> Rtcm::get_MT1005_test ()
{
unsigned int mt1005 = 1005;
unsigned int reference_station_id = 2003; // Max: 4095
double ECEF_X = 1114104.5999; // units: m
double ECEF_Y = -4850729.7108; // units: m
double ECEF_Z = 3975521.4643; // units: m
std::bitset<1> DF001_;
Rtcm::set_DF002(mt1005);
Rtcm::set_DF003(reference_station_id);
Rtcm::set_DF021();
Rtcm::set_DF022(true); // GPS
Rtcm::set_DF023(false); // Glonass
Rtcm::set_DF024(false); // Galileo
DF141 = std::bitset<1>("0"); // 0: Real, physical reference station
DF001_ = std::bitset<1>("0"); // Reserved, set to 0
Rtcm::set_DF025(ECEF_X);
DF142 = std::bitset<1>("0"); // Single Receiver Oscillator Indicator
Rtcm::set_DF026(ECEF_Y);
DF364 = std::bitset<2>("00"); // Quarter Cycle Indicator
Rtcm::set_DF027(ECEF_Z);
std::string message = DF002.to_string() +
DF003.to_string() +
DF021.to_string() +
DF022.to_string() +
DF023.to_string() +
DF024.to_string() +
DF141.to_string() +
DF025.to_string() +
DF142.to_string() +
DF001_.to_string() +
DF026.to_string() +
DF364.to_string() +
DF027.to_string() ;
std::bitset<152> test_msg(message);
return test_msg;
}
std::string Rtcm::print_MT1005( unsigned int ref_id, double ecef_x, double ecef_y, double ecef_z, bool gps, bool glonass, bool galileo, bool non_physical, bool single_oscillator, unsigned int quarter_cycle_indicator)
{
unsigned int msg_number = 1005;
std::bitset<1> DF001_;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF003(ref_id);
Rtcm::set_DF021();
Rtcm::set_DF022(gps);
Rtcm::set_DF023(glonass);
Rtcm::set_DF024(galileo);
DF141 = std::bitset<1>(non_physical);
DF001_ = std::bitset<1>("0");
Rtcm::set_DF025(ecef_x);
DF142 = std::bitset<1>(single_oscillator);
Rtcm::set_DF026(ecef_y);
DF364 = std::bitset<2>(quarter_cycle_indicator);
Rtcm::set_DF027(ecef_z);
std::string data = DF002.to_string() +
DF003.to_string() +
DF021.to_string() +
DF022.to_string() +
DF023.to_string() +
DF024.to_string() +
DF141.to_string() +
DF025.to_string() +
DF142.to_string() +
DF001_.to_string() +
DF026.to_string() +
DF364.to_string() +
DF027.to_string() ;
std::string message = build_message(data);
return message;
}
int Rtcm::read_MT1005(const std::string & message, unsigned int & ref_id, double & ecef_x, double & ecef_y, double & ecef_z, bool & gps, bool & glonass, bool & galileo)
{
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
if(!Rtcm::check_CRC(message) )
{
LOG(WARNING) << " Bad CRC detected in RTCM message MT1005";
return 1;
}
// Check than the message number is correct
unsigned int preamble_length = 8;
unsigned int reserved_field_length = 6;
unsigned int index = preamble_length + reserved_field_length;
unsigned int read_message_length = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
if (read_message_length != 19)
{
LOG(WARNING) << " Message MT1005 with wrong length (19 bytes expected, " << read_message_length << " received)";
return 1;
}
unsigned int msg_number = 1005;
Rtcm::set_DF002(msg_number);
std::bitset<12> read_msg_number(message_bin.substr(index, 12));
index += 12;
if (DF002 != read_msg_number)
{
LOG(WARNING) << " This is not a MT1005 message";
return 1;
}
ref_id = Rtcm::bin_to_uint(message_bin.substr(index, 12));
index += 12;
index += 6; // ITRF year
gps = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
glonass = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
galileo = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
index += 1; // ref_station_indicator
ecef_x = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0;
index += 38;
index += 1; // single rx oscillator
index += 1; // reserved
ecef_y = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0;
index += 38;
index += 2; // quarter cycle indicator
ecef_z = Rtcm::bin_to_double(message_bin.substr(index, 38)) / 10000.0;
return 0;
}
std::string Rtcm::print_MT1005_test()
{
std::bitset<152> mt1005 = get_MT1005_test();
return Rtcm::build_message(mt1005.to_string());
}
// ********************************************************
//
// MESSAGE TYPE 1006 (STATION DESCRIPTION PLUS HEIGHT INFORMATION)
//
// ********************************************************
std::string Rtcm::print_MT1006( unsigned int ref_id, double ecef_x, double ecef_y, double ecef_z, bool gps, bool glonass, bool galileo, bool non_physical, bool single_oscillator, unsigned int quarter_cycle_indicator, double height)
{
unsigned int msg_number = 1006;
std::bitset<1> DF001_;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF003(ref_id);
Rtcm::set_DF021();
Rtcm::set_DF022(gps);
Rtcm::set_DF023(glonass);
Rtcm::set_DF024(galileo);
DF141 = std::bitset<1>(non_physical);
DF001_ = std::bitset<1>("0");
Rtcm::set_DF025(ecef_x);
DF142 = std::bitset<1>(single_oscillator);
Rtcm::set_DF026(ecef_y);
DF364 = std::bitset<2>(quarter_cycle_indicator);
Rtcm::set_DF027(ecef_z);
Rtcm::set_DF028(height);
std::string data = DF002.to_string() +
DF003.to_string() +
DF021.to_string() +
DF022.to_string() +
DF023.to_string() +
DF024.to_string() +
DF141.to_string() +
DF025.to_string() +
DF142.to_string() +
DF001_.to_string() +
DF026.to_string() +
DF364.to_string() +
DF027.to_string() +
DF028.to_string();
std::string message = build_message(data);
return message;
}
// ********************************************************
//
// MESSAGE TYPE 1008 (ANTENNA DESCRIPTOR & SERIAL NUMBER)
//
// ********************************************************
std::string Rtcm::print_MT1008(unsigned int ref_id, const std::string & antenna_descriptor, unsigned int antenna_setup_id, const std::string & antenna_serial_number)
{
unsigned int msg_number = 1008;
std::bitset<12> DF002_ = std::bitset<12>(msg_number);
Rtcm::set_DF003(ref_id);
std::string ant_descriptor = antenna_descriptor;
unsigned int len = ant_descriptor.length();
if (len > 31)
{
ant_descriptor = ant_descriptor.substr(0, 31);
len = 31;
}
DF029 = std::bitset<8>(len);
std::string DF030_str_;
for(auto it = ant_descriptor.begin(); it != ant_descriptor.end(); it++)
{
char c = *it;
std::bitset<8> character = std::bitset<8>(c);
DF030_str_ += character.to_string();
}
Rtcm::set_DF031(antenna_setup_id);
std::string ant_sn(antenna_serial_number);
unsigned int len2 = ant_sn.length();
if (len2 > 31)
{
ant_sn = ant_sn.substr(0, 31);
len2 = 31;
}
DF032 = std::bitset<8>(len2);
std::string DF033_str_;
for(auto it = ant_sn.begin(); it != ant_sn.end(); it++)
{
char c = *it;
std::bitset<8> character = std::bitset<8>(c);
DF033_str_ += character.to_string();
}
std::string data = DF002_.to_string() +
DF003.to_string() +
DF029.to_string() +
DF030_str_ +
DF031.to_string() +
DF032.to_string() +
DF033_str_;
std::string message = build_message(data);
return message;
}
// ********************************************************
//
// MESSAGE TYPE 1019 (GPS EPHEMERIS)
//
// ********************************************************
std::string Rtcm::print_MT1019(const Gps_Ephemeris & gps_eph)
{
unsigned int msg_number = 1019;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF009(gps_eph);
Rtcm::set_DF076(gps_eph);
Rtcm::set_DF077(gps_eph);
Rtcm::set_DF078(gps_eph);
Rtcm::set_DF079(gps_eph);
Rtcm::set_DF071(gps_eph);
Rtcm::set_DF081(gps_eph);
Rtcm::set_DF082(gps_eph);
Rtcm::set_DF083(gps_eph);
Rtcm::set_DF084(gps_eph);
Rtcm::set_DF085(gps_eph);
Rtcm::set_DF086(gps_eph);
Rtcm::set_DF087(gps_eph);
Rtcm::set_DF088(gps_eph);
Rtcm::set_DF089(gps_eph);
Rtcm::set_DF090(gps_eph);
Rtcm::set_DF091(gps_eph);
Rtcm::set_DF092(gps_eph);
Rtcm::set_DF093(gps_eph);
Rtcm::set_DF094(gps_eph);
Rtcm::set_DF095(gps_eph);
Rtcm::set_DF096(gps_eph);
Rtcm::set_DF097(gps_eph);
Rtcm::set_DF098(gps_eph);
Rtcm::set_DF099(gps_eph);
Rtcm::set_DF100(gps_eph);
Rtcm::set_DF101(gps_eph);
Rtcm::set_DF102(gps_eph);
Rtcm::set_DF103(gps_eph);
Rtcm::set_DF137(gps_eph);
std::string data;
data.clear();
data = DF002.to_string() +
DF009.to_string() +
DF076.to_string() +
DF077.to_string() +
DF078.to_string() +
DF079.to_string() +
DF071.to_string() +
DF081.to_string() +
DF082.to_string() +
DF083.to_string() +
DF084.to_string() +
DF085.to_string() +
DF086.to_string() +
DF087.to_string() +
DF088.to_string() +
DF089.to_string() +
DF090.to_string() +
DF091.to_string() +
DF092.to_string() +
DF093.to_string() +
DF094.to_string() +
DF095.to_string() +
DF096.to_string() +
DF097.to_string() +
DF098.to_string() +
DF099.to_string() +
DF100.to_string() +
DF101.to_string() +
DF102.to_string() +
DF103.to_string() +
DF137.to_string();
if (data.length() != 488)
{
LOG(WARNING) << "Bad-formatted RTCM MT1019 (488 bits expected, found " << data.length() << ")";
}
std::string message = build_message(data);
return message;
}
int Rtcm::read_MT1019(const std::string & message, Gps_Ephemeris & gps_eph)
{
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
if(!Rtcm::check_CRC(message) )
{
LOG(WARNING) << " Bad CRC detected in RTCM message MT1019";
return 1;
}
unsigned int preamble_length = 8;
unsigned int reserved_field_length = 6;
unsigned int index = preamble_length + reserved_field_length;
unsigned int read_message_length = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
if (read_message_length != 61)
{
LOG(WARNING) << " Message MT1019 seems too long (61 bytes expected, " << read_message_length << " received)";
return 1;
}
// Check than the message number is correct
unsigned int read_msg_number = Rtcm::bin_to_uint(message_bin.substr(index, 12));
index += 12;
if (1019 != read_msg_number)
{
LOG(WARNING) << " This is not a MT1019 message";
return 1;
}
// Fill Gps Ephemeris with message data content
gps_eph.i_satellite_PRN = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 6)));
index += 6;
gps_eph.i_GPS_week = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
gps_eph.i_SV_accuracy = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 4)));
index += 4;
gps_eph.i_code_on_L2 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 2)));
index += 2;
gps_eph.d_IDOT = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 14))) * I_DOT_LSB;
index += 14;
gps_eph.d_IODE_SF2 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 8)));
gps_eph.d_IODE_SF3 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 8)));
index += 8;
gps_eph.d_Toc = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 16))) * T_OC_LSB;
index += 16;
gps_eph.d_A_f2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 8))) * A_F2_LSB;
index += 8;
gps_eph.d_A_f1 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * A_F1_LSB;
index += 16;
gps_eph.d_A_f0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 22))) * A_F0_LSB;
index += 22;
gps_eph.d_IODC = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
gps_eph.d_Crs = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_RS_LSB;
index += 16;
gps_eph.d_Delta_n = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * DELTA_N_LSB;
index += 16;
gps_eph.d_M_0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * M_0_LSB;
index += 32;
gps_eph.d_Cuc = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_UC_LSB;
index += 16;
gps_eph.d_e_eccentricity = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * E_LSB;
index += 32;
gps_eph.d_Cus = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_US_LSB;
index += 16;
gps_eph.d_sqrt_A = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * SQRT_A_LSB;
index += 32;
gps_eph.d_Toe = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 16))) * T_OE_LSB;
index += 16;
gps_eph.d_Cic = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_IC_LSB;
index += 16;
gps_eph.d_OMEGA0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_0_LSB;
index += 32;
gps_eph.d_Cis = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_IS_LSB;
index += 16;
gps_eph.d_i_0 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * I_0_LSB;
index += 32;
gps_eph.d_Crc = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_RC_LSB;
index += 16;
gps_eph.d_OMEGA = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_LSB;
index += 32;
gps_eph.d_OMEGA_DOT = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 24))) * OMEGA_DOT_LSB;
index += 24;
gps_eph.d_TGD = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 8))) * T_GD_LSB;
index += 8;
gps_eph.i_SV_health = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 6)));
index += 6;
gps_eph.b_L2_P_data_flag = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
index += 1;
gps_eph.b_fit_interval_flag = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
return 0;
}
// ********************************************************
//
// MESSAGE TYPE 1045 (GALILEO EPHEMERIS)
//
// ********************************************************
std::string Rtcm::print_MT1045(const Galileo_Ephemeris & gal_eph)
{
unsigned int msg_number = 1045;
Rtcm::set_DF002(msg_number);
Rtcm::set_DF252(gal_eph);
Rtcm::set_DF289(gal_eph);
Rtcm::set_DF290(gal_eph);
Rtcm::set_DF291(gal_eph);
Rtcm::set_DF293(gal_eph);
Rtcm::set_DF294(gal_eph);
Rtcm::set_DF295(gal_eph);
Rtcm::set_DF296(gal_eph);
Rtcm::set_DF297(gal_eph);
Rtcm::set_DF298(gal_eph);
Rtcm::set_DF299(gal_eph);
Rtcm::set_DF300(gal_eph);
Rtcm::set_DF301(gal_eph);
Rtcm::set_DF302(gal_eph);
Rtcm::set_DF303(gal_eph);
Rtcm::set_DF304(gal_eph);
Rtcm::set_DF305(gal_eph);
Rtcm::set_DF306(gal_eph);
Rtcm::set_DF307(gal_eph);
Rtcm::set_DF308(gal_eph);
Rtcm::set_DF309(gal_eph);
Rtcm::set_DF310(gal_eph);
Rtcm::set_DF311(gal_eph);
Rtcm::set_DF312(gal_eph);
Rtcm::set_DF314(gal_eph);
Rtcm::set_DF315(gal_eph);
unsigned int seven_zero = 0;
std::bitset<7> DF001_ = std::bitset<7>(seven_zero);
std::string data;
data.clear();
data = DF002.to_string() +
DF252.to_string() +
DF289.to_string() +
DF290.to_string() +
DF291.to_string() +
DF292.to_string() +
DF293.to_string() +
DF294.to_string() +
DF295.to_string() +
DF296.to_string() +
DF297.to_string() +
DF298.to_string() +
DF299.to_string() +
DF300.to_string() +
DF301.to_string() +
DF302.to_string() +
DF303.to_string() +
DF304.to_string() +
DF305.to_string() +
DF306.to_string() +
DF307.to_string() +
DF308.to_string() +
DF309.to_string() +
DF310.to_string() +
DF311.to_string() +
DF312.to_string() +
DF314.to_string() +
DF315.to_string() +
DF001_.to_string();
if (data.length() != 496)
{
LOG(WARNING) << "Bad-formatted RTCM MT1045 (496 bits expected, found " << data.length() << ")";
}
std::string message = build_message(data);
return message;
}
int Rtcm::read_MT1045(const std::string & message, Galileo_Ephemeris & gal_eph)
{
// Convert message to binary
std::string message_bin = Rtcm::hex_to_bin(message);
if(!Rtcm::check_CRC(message) )
{
LOG(WARNING) << " Bad CRC detected in RTCM message MT1045";
return 1;
}
unsigned int preamble_length = 8;
unsigned int reserved_field_length = 6;
unsigned int index = preamble_length + reserved_field_length;
unsigned int read_message_length = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
if (read_message_length != 62)
{
LOG(WARNING) << " Message MT1045 seems too long (62 bytes expected, " << read_message_length << " received)";
return 1;
}
// Check than the message number is correct
unsigned int read_msg_number = Rtcm::bin_to_uint(message_bin.substr(index, 12));
index += 12;
if (1045 != read_msg_number)
{
LOG(WARNING) << " This is not a MT1045 message";
return 1;
}
// Fill Galileo Ephemeris with message data content
gal_eph.i_satellite_PRN = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 6)));
index += 6;
gal_eph.WN_5 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 12)));
index += 12;
gal_eph.IOD_nav_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 10)));
index += 10;
gal_eph.SISA_3 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 8)));
index += 8;
gal_eph.iDot_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 14))) * iDot_2_LSB;
index += 14;
gal_eph.t0c_4 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 14))) * t0c_4_LSB;
index += 14;
gal_eph.af2_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 6))) * af2_4_LSB;
index += 6;
gal_eph.af1_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 21))) * af1_4_LSB;
index += 21;
gal_eph.af0_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 31))) * af0_4_LSB;
index += 31;
gal_eph.C_rs_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_rs_3_LSB;
index += 16;
gal_eph.delta_n_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * delta_n_3_LSB;
index += 16;
gal_eph.M0_1 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * M0_1_LSB;
index += 32;
gal_eph.C_uc_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_uc_3_LSB;
index += 16;
gal_eph.e_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * e_1_LSB;
index += 32;
gal_eph.C_us_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_us_3_LSB;
index += 16;
gal_eph.A_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 32))) * A_1_LSB_gal;
index += 32;
gal_eph.t0e_1 = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 14))) * t0e_1_LSB;
index += 14;
gal_eph.C_ic_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_ic_4_LSB;
index += 16;
gal_eph.OMEGA_0_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * OMEGA_0_2_LSB;
index += 32;
gal_eph.C_is_4 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_is_4_LSB;
index += 16;
gal_eph.i_0_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * i_0_2_LSB;
index += 32;
gal_eph.C_rc_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 16))) * C_rc_3_LSB;
index += 16;
gal_eph.omega_2 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 32))) * omega_2_LSB;
index += 32;
gal_eph.OMEGA_dot_3 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 24))) * OMEGA_dot_3_LSB;
index += 24;
gal_eph.BGD_E1E5a_5 = static_cast(Rtcm::bin_to_int(message_bin.substr(index, 10)));
index += 10;
gal_eph.E5a_HS = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 2)));
index += 2;
gal_eph.E5a_DVS = static_cast(Rtcm::bin_to_uint(message_bin.substr(index, 1)));
return 0;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM1 (COMPACT PSEUDORANGES)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_1( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1071;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1071;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1091;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1071;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_1_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_1_content_signal_data(pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_header(unsigned int msg_number, const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool divergence_free,
bool more_messages)
{
Rtcm::set_DF002(msg_number);
Rtcm::set_DF003(ref_id);
if(gps_eph.i_satellite_PRN != 0)
{
Rtcm::set_DF004(gps_eph, obs_time);
}
else if(gps_cnav_eph.i_satellite_PRN != 0)
{
Rtcm::set_DF004(gps_cnav_eph, obs_time);
}
else
{
Rtcm::set_DF248(gal_eph, obs_time);
}
Rtcm::set_DF393(more_messages);
Rtcm::set_DF409(0); // Issue of Data Station. 0: not utilized
std::bitset<7> DF001_ = std::bitset<7>("0000000");
Rtcm::set_DF411(clock_steering_indicator);
Rtcm::set_DF412(external_clock_indicator);
Rtcm::set_DF417(divergence_free);
Rtcm::set_DF418(smooth_int);
Rtcm::set_DF394(pseudoranges);
Rtcm::set_DF395(pseudoranges);
std::string header = DF002.to_string() + DF003.to_string();
if(gps_eph.i_satellite_PRN != 0)
{
header += DF004.to_string();
}
else
{
header += DF248.to_string();
}
header = header + DF393.to_string() +
DF409.to_string() +
DF001_.to_string() +
DF411.to_string() +
DF417.to_string() +
DF412.to_string() +
DF418.to_string() +
DF394.to_string() +
DF395.to_string() +
Rtcm::set_DF396(pseudoranges);
return header;
}
std::string Rtcm::get_MSM_1_content_sat_data(const std::map & pseudoranges)
{
std::string sat_data;
sat_data.clear();
Rtcm::set_DF394(pseudoranges);
unsigned int num_satellites = DF394.count();
std::vector > pseudoranges_vector;
std::map::const_iterator gnss_synchro_iter;
std::vector pos;
std::vector::iterator it;
for(gnss_synchro_iter = pseudoranges.begin();
gnss_synchro_iter != pseudoranges.end();
gnss_synchro_iter++)
{
it = std::find(pos.begin(), pos.end(), 65 - gnss_synchro_iter->second.PRN);
if(it == pos.end())
{
pos.push_back(65 - gnss_synchro_iter->second.PRN);
pseudoranges_vector.push_back(*gnss_synchro_iter);
}
}
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(pseudoranges_vector);
for(unsigned int nsat = 0; nsat < num_satellites; nsat++)
{
Rtcm::set_DF398( ordered_by_PRN_pos.at(nsat).second );
sat_data += DF398.to_string();
}
return sat_data;
}
std::string Rtcm::get_MSM_1_content_signal_data(const std::map & pseudoranges)
{
std::string signal_data;
signal_data.clear();
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF400(ordered_by_PRN_pos.at( cell ).second);
signal_data += DF400.to_string();
}
return signal_data;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM2 (COMPACT PHASERANGES)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_2( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1072;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1072;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1092;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1072;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_1_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_2_content_signal_data(gps_eph, gps_cnav_eph, gal_eph, obs_time, pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_2_content_signal_data(const Gps_Ephemeris & ephNAV, const Gps_CNAV_Ephemeris & ephCNAV, const Galileo_Ephemeris & ephFNAV, double obs_time, const std::map & pseudoranges)
{
std::string signal_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF401(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF402(ephNAV, ephCNAV, ephFNAV, obs_time, ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF420(ordered_by_PRN_pos.at( cell ).second);
first_data_type += DF401.to_string();
second_data_type += DF402.to_string();
third_data_type += DF420.to_string();
}
signal_data = first_data_type + second_data_type + third_data_type;
return signal_data;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM3 (COMPACT PSEUDORANGES AND PHASERANGES)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_3( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1073;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1073;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1093;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1073;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_1_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_3_content_signal_data(gps_eph, gps_cnav_eph, gal_eph, obs_time, pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_3_content_signal_data(const Gps_Ephemeris & ephNAV, const Gps_CNAV_Ephemeris & ephCNAV, const Galileo_Ephemeris & ephFNAV, double obs_time, const std::map & pseudoranges)
{
std::string signal_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
std::string fourth_data_type;
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF400(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF401(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF402(ephNAV, ephCNAV, ephFNAV, obs_time, ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF420(ordered_by_PRN_pos.at( cell ).second);
first_data_type += DF400.to_string();
second_data_type += DF401.to_string();
third_data_type += DF402.to_string();
fourth_data_type += DF420.to_string();
}
signal_data = first_data_type + second_data_type + third_data_type + fourth_data_type;
return signal_data;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM4 (FULL PSEUDORANGES AND PHASERANGES PLUS CNR)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_4( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1074;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1074;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1094;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1074;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_4_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_4_content_signal_data(gps_eph, gps_cnav_eph, gal_eph, obs_time, pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_4_content_sat_data(const std::map & pseudoranges)
{
std::string sat_data;
std::string first_data_type;
std::string second_data_type;
Rtcm::set_DF394(pseudoranges);
unsigned int num_satellites = DF394.count();
std::vector > pseudoranges_vector;
std::map::const_iterator gnss_synchro_iter;
std::vector pos;
std::vector::iterator it;
for(gnss_synchro_iter = pseudoranges.begin();
gnss_synchro_iter != pseudoranges.end();
gnss_synchro_iter++)
{
it = std::find(pos.begin(), pos.end(), 65 - gnss_synchro_iter->second.PRN);
if(it == pos.end())
{
pos.push_back(65 - gnss_synchro_iter->second.PRN);
pseudoranges_vector.push_back(*gnss_synchro_iter);
}
}
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(pseudoranges_vector);
for(unsigned int nsat = 0; nsat < num_satellites; nsat++)
{
Rtcm::set_DF397( ordered_by_PRN_pos.at(nsat).second );
Rtcm::set_DF398( ordered_by_PRN_pos.at(nsat).second );
first_data_type += DF397.to_string();
second_data_type += DF398.to_string();
}
sat_data = first_data_type + second_data_type;
return sat_data;
}
std::string Rtcm::get_MSM_4_content_signal_data(const Gps_Ephemeris & ephNAV, const Gps_CNAV_Ephemeris & ephCNAV, const Galileo_Ephemeris & ephFNAV, double obs_time, const std::map & pseudoranges)
{
std::string signal_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
std::string fourth_data_type;
std::string fifth_data_type;
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF400(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF401(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF402(ephNAV, ephCNAV, ephFNAV, obs_time, ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF420(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF403(ordered_by_PRN_pos.at( cell ).second);
first_data_type += DF400.to_string();
second_data_type += DF401.to_string();
third_data_type += DF402.to_string();
fourth_data_type += DF420.to_string();
fifth_data_type += DF403.to_string();
}
signal_data = first_data_type + second_data_type + third_data_type + fourth_data_type + fifth_data_type;
return signal_data;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM5 (FULL PSEUDORANGES, PHASERANGES, PHASERANGERATE PLUS CNR)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_5( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1075;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1075;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1095;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1075;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_5_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_5_content_signal_data(gps_eph, gps_cnav_eph, gal_eph, obs_time, pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_5_content_sat_data(const std::map & pseudoranges)
{
std::string sat_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
std::string fourth_data_type;
Rtcm::set_DF394(pseudoranges);
unsigned int num_satellites = DF394.count();
std::vector > pseudoranges_vector;
std::map::const_iterator gnss_synchro_iter;
std::vector pos;
std::vector::iterator it;
for(gnss_synchro_iter = pseudoranges.begin();
gnss_synchro_iter != pseudoranges.end();
gnss_synchro_iter++)
{
it = std::find(pos.begin(), pos.end(), 65 - gnss_synchro_iter->second.PRN);
if(it == pos.end())
{
pos.push_back(65 - gnss_synchro_iter->second.PRN);
pseudoranges_vector.push_back(*gnss_synchro_iter);
}
}
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(pseudoranges_vector);
for(unsigned int nsat = 0; nsat < num_satellites; nsat++)
{
Rtcm::set_DF397( ordered_by_PRN_pos.at(nsat).second );
Rtcm::set_DF398( ordered_by_PRN_pos.at(nsat).second );
Rtcm::set_DF399( ordered_by_PRN_pos.at(nsat).second );
std::bitset<4> reserved = std::bitset<4>("0000");
first_data_type += DF397.to_string();
second_data_type += reserved.to_string();
third_data_type += DF398.to_string();
fourth_data_type += DF399.to_string();
}
sat_data = first_data_type + second_data_type + third_data_type + fourth_data_type;
return sat_data;
}
std::string Rtcm::get_MSM_5_content_signal_data(const Gps_Ephemeris & ephNAV, const Gps_CNAV_Ephemeris & ephCNAV, const Galileo_Ephemeris & ephFNAV, double obs_time, const std::map & pseudoranges)
{
std::string signal_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
std::string fourth_data_type;
std::string fifth_data_type;
std::string sixth_data_type;
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF400(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF401(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF402(ephNAV, ephCNAV, ephFNAV, obs_time, ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF420(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF403(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF404(ordered_by_PRN_pos.at( cell ).second);
first_data_type += DF400.to_string();
second_data_type += DF401.to_string();
third_data_type += DF402.to_string();
fourth_data_type += DF420.to_string();
fifth_data_type += DF403.to_string();
sixth_data_type += DF404.to_string();
}
signal_data = first_data_type + second_data_type + third_data_type + fourth_data_type + fifth_data_type + sixth_data_type;
return signal_data;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM6 (FULL PSEUDORANGES AND PHASERANGES PLUS CNR, HIGH RESOLUTION)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_6( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1076;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1076;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1096;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1076;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_4_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_6_content_signal_data(gps_eph, gps_cnav_eph, gal_eph, obs_time, pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_6_content_signal_data(const Gps_Ephemeris & ephNAV, const Gps_CNAV_Ephemeris & ephCNAV, const Galileo_Ephemeris & ephFNAV, double obs_time, const std::map & pseudoranges)
{
std::string signal_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
std::string fourth_data_type;
std::string fifth_data_type;
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF405(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF406(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF407(ephNAV, ephCNAV, ephFNAV, obs_time, ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF420(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF408(ordered_by_PRN_pos.at( cell ).second);
first_data_type += DF405.to_string();
second_data_type += DF406.to_string();
third_data_type += DF407.to_string();
fourth_data_type += DF420.to_string();
fifth_data_type += DF408.to_string();
}
signal_data = first_data_type + second_data_type + third_data_type + fourth_data_type + fifth_data_type;
return signal_data;
}
// **********************************************************************************************
//
// MESSAGE TYPE MSM7 (FULL PSEUDORANGES, PHASERANGES, PHASERANGERATE AND CNR, HIGH RESOLUTION)
//
// **********************************************************************************************
std::string Rtcm::print_MSM_7( const Gps_Ephemeris & gps_eph,
const Gps_CNAV_Ephemeris & gps_cnav_eph,
const Galileo_Ephemeris & gal_eph,
double obs_time,
const std::map & pseudoranges,
unsigned int ref_id,
unsigned int clock_steering_indicator,
unsigned int external_clock_indicator,
int smooth_int,
bool sync_flag,
bool divergence_free,
bool more_messages)
{
unsigned int msg_number = 0;
if(gps_eph.i_satellite_PRN != 0) msg_number = 1077;
if(gps_cnav_eph.i_satellite_PRN != 0) msg_number = 1077;
if(gal_eph.i_satellite_PRN != 0) msg_number = 1097;
if(((gps_eph.i_satellite_PRN != 0) ||(gps_cnav_eph.i_satellite_PRN != 0) ) && (gal_eph.i_satellite_PRN != 0))
{
LOG(WARNING) << "MSM messages for observables from different systems are not defined"; //print two messages?
}
if(msg_number == 0)
{
LOG(WARNING) << "Invalid ephemeris provided";
msg_number = 1076;
}
std::string header = Rtcm::get_MSM_header(msg_number, gps_eph, gps_cnav_eph,
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
divergence_free,
more_messages);
std::string sat_data = Rtcm::get_MSM_5_content_sat_data(pseudoranges);
std::string signal_data = Rtcm::get_MSM_7_content_signal_data(gps_eph, gps_cnav_eph, gal_eph, obs_time, pseudoranges);
std::string message = build_message(header + sat_data + signal_data);
return message;
}
std::string Rtcm::get_MSM_7_content_signal_data(const Gps_Ephemeris & ephNAV, const Gps_CNAV_Ephemeris & ephCNAV, const Galileo_Ephemeris & ephFNAV, double obs_time, const std::map & pseudoranges)
{
std::string signal_data;
std::string first_data_type;
std::string second_data_type;
std::string third_data_type;
std::string fourth_data_type;
std::string fifth_data_type;
std::string sixth_data_type;
unsigned int Ncells = pseudoranges.size();
std::vector > pseudoranges_vector;
std::map::const_iterator map_iter;
for(map_iter = pseudoranges.begin();
map_iter != pseudoranges.end();
map_iter++)
{
pseudoranges_vector.push_back(*map_iter);
}
std::vector > ordered_by_signal = Rtcm::sort_by_signal(pseudoranges_vector);
std::reverse(ordered_by_signal.begin(), ordered_by_signal.end());
std::vector > ordered_by_PRN_pos = Rtcm::sort_by_PRN_mask(ordered_by_signal);
for(unsigned int cell = 0; cell < Ncells ; cell++)
{
Rtcm::set_DF405(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF406(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF407(ephNAV, ephCNAV, ephFNAV, obs_time, ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF420(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF408(ordered_by_PRN_pos.at( cell ).second);
Rtcm::set_DF404(ordered_by_PRN_pos.at( cell ).second);
first_data_type += DF405.to_string();
second_data_type += DF406.to_string();
third_data_type += DF407.to_string();
fourth_data_type += DF420.to_string();
fifth_data_type += DF408.to_string();
sixth_data_type += DF404.to_string();
}
signal_data = first_data_type + second_data_type + third_data_type + fourth_data_type + fifth_data_type + sixth_data_type;
return signal_data;
}
// *****************************************************************************************************
// Some utilities
// *****************************************************************************************************
std::vector > Rtcm::sort_by_PRN_mask(const std::vector > & synchro_map) const
{
std::vector >::const_iterator synchro_map_iter;
std::vector > my_vec;
struct {
bool operator()(const std::pair & a, const std::pair & b)
{
unsigned int value_a = 64 - a.second.PRN;
unsigned int value_b = 64 - b.second.PRN;
return value_a < value_b;
}
} has_lower_pos;
for(synchro_map_iter = synchro_map.begin();
synchro_map_iter != synchro_map.end();
synchro_map_iter++)
{
std::pair p(synchro_map_iter->first, synchro_map_iter->second);
my_vec.push_back(p);
}
std::sort(my_vec.begin(), my_vec.end(), has_lower_pos);
std::reverse(my_vec.begin(), my_vec.end());
return my_vec;
}
std::vector > Rtcm::sort_by_signal(const std::vector > & synchro_map) const
{
std::vector >::const_iterator synchro_map_iter;
std::vector > my_vec;
struct {
bool operator()(const std::pair & a, const std::pair & b)
{
unsigned int value_a = 0;
unsigned int value_b = 0;
std::string system_a(&a.second.System, 1);
std::string system_b(&b.second.System, 1);
std::string sig_a_(a.second.Signal);
std::string sig_a = sig_a_.substr(0,2);
std::string sig_b_(b.second.Signal);
std::string sig_b = sig_b_.substr(0,2);
if(system_a.compare("G") == 0)
{
value_a = gps_signal_map.at(sig_a);
}
if(system_a.compare("E") == 0)
{
value_a = galileo_signal_map.at(sig_a);
}
if(system_b.compare("G") == 0)
{
value_b = gps_signal_map.at(sig_b);
}
if(system_b.compare("E") == 0)
{
value_b = galileo_signal_map.at(sig_b);
}
return value_a < value_b;
}
} has_lower_signalID;
for(synchro_map_iter = synchro_map.begin();
synchro_map_iter != synchro_map.end();
synchro_map_iter++)
{
std::pair p(synchro_map_iter->first, synchro_map_iter->second);
my_vec.push_back(p);
}
std::sort(my_vec.begin(), my_vec.end(), has_lower_signalID);
return my_vec;
}
std::map Rtcm::gps_signal_map = []
{
std::map gps_signal_map_;
// Table 3.5-91
gps_signal_map_["1C"] = 2;
gps_signal_map_["1P"] = 3;
gps_signal_map_["1W"] = 4;
gps_signal_map_["2C"] = 8;
gps_signal_map_["2P"] = 9;
gps_signal_map_["2W"] = 10;
gps_signal_map_["2S"] = 15;
gps_signal_map_["2L"] = 16;
gps_signal_map_["2X"] = 17;
gps_signal_map_["5I"] = 22;
gps_signal_map_["5Q"] = 23;
gps_signal_map_["5X"] = 24;
return gps_signal_map_;
}();
std::map Rtcm::galileo_signal_map = []
{
std::map galileo_signal_map_;
// Table 3.5-100
galileo_signal_map_["1C"] = 2;
galileo_signal_map_["1A"] = 3;
galileo_signal_map_["1B"] = 4;
galileo_signal_map_["1X"] = 5;
galileo_signal_map_["1Z"] = 6;
galileo_signal_map_["6C"] = 8;
galileo_signal_map_["6A"] = 9;
galileo_signal_map_["6B"] = 10;
galileo_signal_map_["6X"] = 11;
galileo_signal_map_["6Z"] = 12;
galileo_signal_map_["7I"] = 14;
galileo_signal_map_["7Q"] = 15;
galileo_signal_map_["7X"] = 16;
galileo_signal_map_["8I"] = 18;
galileo_signal_map_["8Q"] = 19;
galileo_signal_map_["8X"] = 20;
galileo_signal_map_["5I"] = 22;
galileo_signal_map_["5Q"] = 23;
galileo_signal_map_["5X"] = 24;
return galileo_signal_map_;
}();
boost::posix_time::ptime Rtcm::compute_GPS_time(const Gps_Ephemeris & eph, double obs_time) const
{
const double gps_t = obs_time;
boost::posix_time::time_duration t = boost::posix_time::millisec((gps_t + 604800 * static_cast(eph.i_GPS_week % 1024)) * 1000);
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
return p_time;
}
boost::posix_time::ptime Rtcm::compute_GPS_time(const Gps_CNAV_Ephemeris & eph, double obs_time) const
{
const double gps_t = obs_time;
boost::posix_time::time_duration t = boost::posix_time::millisec((gps_t + 604800 * static_cast(eph.i_GPS_week % 1024)) * 1000);
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
return p_time;
}
boost::posix_time::ptime Rtcm::compute_Galileo_time(const Galileo_Ephemeris & eph, double obs_time) const
{
double galileo_t = obs_time;
boost::posix_time::time_duration t = boost::posix_time::millisec((galileo_t + 604800 * static_cast(eph.WN_5)) * 1000);
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
return p_time;
}
unsigned int Rtcm::lock_time(const Gps_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
unsigned int lock_time_in_seconds;
boost::posix_time::ptime current_time = Rtcm::compute_GPS_time(eph, obs_time);
boost::posix_time::ptime last_lock_time = Rtcm::gps_L1_last_lock_time[65 - gnss_synchro.PRN];
if(last_lock_time.is_not_a_date_time() )// || CHECK LLI!!......)
{
Rtcm::gps_L1_last_lock_time[65 - gnss_synchro.PRN] = current_time;
}
boost::posix_time::time_duration lock_duration = current_time - Rtcm::gps_L1_last_lock_time[65 - gnss_synchro.PRN];
lock_time_in_seconds = static_cast(lock_duration.total_seconds());
return lock_time_in_seconds;
}
unsigned int Rtcm::lock_time(const Gps_CNAV_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
unsigned int lock_time_in_seconds;
boost::posix_time::ptime current_time = Rtcm::compute_GPS_time(eph, obs_time);
boost::posix_time::ptime last_lock_time = Rtcm::gps_L2_last_lock_time[65 - gnss_synchro.PRN];
if(last_lock_time.is_not_a_date_time() )// || CHECK LLI!!......)
{
Rtcm::gps_L2_last_lock_time[65 - gnss_synchro.PRN] = current_time;
}
boost::posix_time::time_duration lock_duration = current_time - Rtcm::gps_L1_last_lock_time[65 - gnss_synchro.PRN];
lock_time_in_seconds = static_cast(lock_duration.total_seconds());
return lock_time_in_seconds;
}
unsigned int Rtcm::lock_time(const Galileo_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
unsigned int lock_time_in_seconds;
boost::posix_time::ptime current_time = Rtcm::compute_Galileo_time(eph, obs_time);
boost::posix_time::ptime last_lock_time;
std::string sig_(gnss_synchro.Signal);
if(sig_.compare("1B") == 0)
{
last_lock_time = Rtcm::gal_E1_last_lock_time[65 - gnss_synchro.PRN];
}
if((sig_.compare("5X") == 0) || (sig_.compare("8X") == 0) || (sig_.compare("7X") == 0) )
{
last_lock_time = Rtcm::gal_E5_last_lock_time[65 - gnss_synchro.PRN];
}
if(last_lock_time.is_not_a_date_time() )// || CHECK LLI!!......)
{
if(sig_.compare("1B") == 0)
{
Rtcm::gal_E1_last_lock_time[65 - gnss_synchro.PRN] = current_time;
}
if((sig_.compare("5X") == 0) || (sig_.compare("8X") == 0) || (sig_.compare("7X") == 0) )
{
Rtcm::gal_E5_last_lock_time[65 - gnss_synchro.PRN] = current_time;
}
}
boost::posix_time::time_duration lock_duration = current_time - current_time;
if(sig_.compare("1B") == 0)
{
lock_duration = current_time - Rtcm::gal_E1_last_lock_time[65 - gnss_synchro.PRN];
}
if((sig_.compare("5X") == 0) || (sig_.compare("8X") == 0) || (sig_.compare("7X") == 0) )
{
lock_duration = current_time - Rtcm::gal_E5_last_lock_time[65 - gnss_synchro.PRN];
}
lock_time_in_seconds = static_cast(lock_duration.total_seconds());
return lock_time_in_seconds;
}
unsigned int Rtcm::lock_time_indicator(unsigned int lock_time_period_s)
{
// Table 3.4-2
if(lock_time_period_s <= 0 ) return 0;
if(lock_time_period_s < 24 ) return lock_time_period_s;
if(lock_time_period_s < 72 ) return (lock_time_period_s + 24 ) / 2;
if(lock_time_period_s < 168) return (lock_time_period_s + 120 ) / 4;
if(lock_time_period_s < 360) return (lock_time_period_s + 408 ) / 8;
if(lock_time_period_s < 744) return (lock_time_period_s + 1176) / 16;
if(lock_time_period_s < 937) return (lock_time_period_s + 3096) / 32;
return 127;
}
unsigned int Rtcm::msm_lock_time_indicator(unsigned int lock_time_period_s)
{
// Table 3.5-74
if(lock_time_period_s < 32 ) return 0;
if(lock_time_period_s < 64 ) return 1;
if(lock_time_period_s < 128 ) return 2;
if(lock_time_period_s < 256 ) return 3;
if(lock_time_period_s < 512 ) return 4;
if(lock_time_period_s < 1024 ) return 5;
if(lock_time_period_s < 2048 ) return 6;
if(lock_time_period_s < 4096 ) return 7;
if(lock_time_period_s < 8192 ) return 8;
if(lock_time_period_s < 16384 ) return 9;
if(lock_time_period_s < 32768 ) return 10;
if(lock_time_period_s < 65536 ) return 11;
if(lock_time_period_s < 131072) return 12;
if(lock_time_period_s < 262144) return 13;
if(lock_time_period_s < 524288) return 14;
return 15;
}
unsigned int Rtcm::msm_extended_lock_time_indicator(unsigned int lock_time_period_s)
{
// Table 3.5-75
if( lock_time_period_s < 64 ) return ( lock_time_period_s );
if( 64 <= lock_time_period_s && lock_time_period_s < 128 ) return ( 64 + (lock_time_period_s - 64 ) / 2 );
if( 128 <= lock_time_period_s && lock_time_period_s < 256 ) return ( 96 + (lock_time_period_s - 128 ) / 4 );
if( 256 <= lock_time_period_s && lock_time_period_s < 512 ) return (128 + (lock_time_period_s - 256 ) / 8 );
if( 512 <= lock_time_period_s && lock_time_period_s < 1024 ) return (160 + (lock_time_period_s - 512 ) / 16 );
if( 1024 <= lock_time_period_s && lock_time_period_s < 2048 ) return (192 + (lock_time_period_s - 1024 ) / 32 );
if( 2048 <= lock_time_period_s && lock_time_period_s < 4096 ) return (224 + (lock_time_period_s - 2048 ) / 64 );
if( 4096 <= lock_time_period_s && lock_time_period_s < 8192 ) return (256 + (lock_time_period_s - 4096 ) / 128 );
if( 8192 <= lock_time_period_s && lock_time_period_s < 16384 ) return (288 + (lock_time_period_s - 8192 ) / 256 );
if( 16384 <= lock_time_period_s && lock_time_period_s < 32768 ) return (320 + (lock_time_period_s - 16384 ) / 512 );
if( 32768 <= lock_time_period_s && lock_time_period_s < 65536 ) return (352 + (lock_time_period_s - 32768 ) / 1024 );
if( 65536 <= lock_time_period_s && lock_time_period_s < 131072 ) return (384 + (lock_time_period_s - 65536 ) / 2048 );
if( 131072 <= lock_time_period_s && lock_time_period_s < 262144 ) return (416 + (lock_time_period_s - 131072 ) / 4096 );
if( 262144 <= lock_time_period_s && lock_time_period_s < 524288 ) return (448 + (lock_time_period_s - 262144 ) / 8192 );
if( 524288 <= lock_time_period_s && lock_time_period_s < 1048576 ) return (480 + (lock_time_period_s - 524288 ) / 16384 );
if( 1048576 <= lock_time_period_s && lock_time_period_s < 2097152 ) return (512 + (lock_time_period_s - 1048576 ) / 32768 );
if( 2097152 <= lock_time_period_s && lock_time_period_s < 4194304 ) return (544 + (lock_time_period_s - 2097152 ) / 65536 );
if( 4194304 <= lock_time_period_s && lock_time_period_s < 8388608 ) return (576 + (lock_time_period_s - 4194304 ) / 131072 );
if( 8388608 <= lock_time_period_s && lock_time_period_s < 16777216 ) return (608 + (lock_time_period_s - 8388608 ) / 262144 );
if( 16777216 <= lock_time_period_s && lock_time_period_s < 33554432 ) return (640 + (lock_time_period_s - 16777216) / 524288 );
if( 33554432 <= lock_time_period_s && lock_time_period_s < 67108864 ) return (672 + (lock_time_period_s - 33554432) / 1048576);
if( 67108864 <= lock_time_period_s ) return (704 );
return 1023; // will never happen
}
// *****************************************************************************************************
//
// DATA FIELDS AS DEFINED AT RTCM STANDARD 10403.2
//
// *****************************************************************************************************
int Rtcm::reset_data_fields()
{
//DF001.reset();
DF002.reset();
DF003.reset();
DF004.reset();
DF005.reset();
DF006.reset();
DF007.reset();
DF008.reset();
DF009.reset();
DF010.reset();
DF011.reset();
DF012.reset();
DF013.reset();
DF014.reset();
DF015.reset();
DF017.reset();
DF018.reset();
DF019.reset();
DF020.reset();
// Contents of GPS Satellite Ephemeris Data, Message Type 1019
DF071.reset();
DF076.reset();
DF077.reset();
DF078.reset();
DF079.reset();
DF081.reset();
DF082.reset();
DF083.reset();
DF084.reset();
DF085.reset();
DF086.reset();
DF087.reset();
DF088.reset();
DF089.reset();
DF090.reset();
DF091.reset();
DF092.reset();
DF093.reset();
DF094.reset();
DF095.reset();
DF096.reset();
DF097.reset();
DF098.reset();
DF099.reset();
DF100.reset();
DF101.reset();
DF102.reset();
DF103.reset();
DF137.reset();
DF248.reset();
// Contents of Galileo F/NAV Satellite Ephemeris Data, Message Type 1045
DF252.reset();
DF289.reset();
DF290.reset();
DF291.reset();
DF292.reset();
DF293.reset();
DF294.reset();
DF295.reset();
DF296.reset();
DF297.reset();
DF298.reset();
DF299.reset();
DF300.reset();
DF301.reset();
DF302.reset();
DF303.reset();
DF304.reset();
DF305.reset();
DF306.reset();
DF307.reset();
DF308.reset();
DF309.reset();
DF310.reset();
DF311.reset();
DF312.reset();
DF314.reset();
DF315.reset();
DF364.reset();
DF393.reset();
DF394.reset();
DF395.reset();
DF397.reset();
DF398.reset();
DF399.reset();
DF400.reset();
DF401.reset();
DF402.reset();
DF403.reset();
DF404.reset();
DF405.reset();
DF406.reset();
DF407.reset();
DF408.reset();
DF409.reset();
DF411.reset();
DF412.reset();
DF417.reset();
DF418.reset();
DF420.reset();
return 0;
}
int Rtcm::set_DF002(unsigned int message_number)
{
if (message_number > 4095)
{
LOG(WARNING) << "RTCM message number must be between 0 and 4095, but it has been set to " << message_number;
}
DF002 = std::bitset<12>(message_number);
return 0;
}
int Rtcm::set_DF003(unsigned int ref_station_ID)
{
//unsigned int station_ID = ref_station_ID;
if (ref_station_ID > 4095)
{
LOG(WARNING) << "RTCM reference station ID must be between 0 and 4095, but it has been set to " << ref_station_ID;
}
DF003 = std::bitset<12>(ref_station_ID);
return 0;
}
int Rtcm::set_DF004(const Gps_Ephemeris & gps_eph, double obs_time)
{
// TOW in milliseconds from the beginning of the GPS week, measured in GPS time
unsigned long int tow = static_cast(std::round((obs_time + 604800 * static_cast(gps_eph.i_GPS_week % 1024)) * 1000));
if(tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
tow = 604799999;
}
DF004 = std::bitset<30>(tow);
return 0;
}
int Rtcm::set_DF004(const Gps_CNAV_Ephemeris & gps_eph, double obs_time)
{
// TOW in milliseconds from the beginning of the GPS week, measured in GPS time
unsigned long int tow = static_cast(std::round((obs_time + 604800 * static_cast(gps_eph.i_GPS_week % 1024)) * 1000));
if(tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
tow = 604799999;
}
DF004 = std::bitset<30>(tow);
return 0;
}
int Rtcm::set_DF005(bool sync_flag)
{
// 0 - No further GNSS observables referenced to the same Epoch Time will be transmitted. This enables the receiver to begin processing
// the data immediately after decoding the message.
// 1 - The next message will contain observables of another GNSS source referenced to the same Epoch Time.
DF005 = std::bitset<1>(sync_flag);
return 0;
}
int Rtcm::set_DF006(const std::map & pseudoranges)
{
//Number of satellites observed in current epoch
unsigned short int nsats = 0;
std::map::const_iterator pseudoranges_iter;
for(pseudoranges_iter = pseudoranges.begin();
pseudoranges_iter != pseudoranges.end();
pseudoranges_iter++)
{
nsats++;
}
if (nsats > 31)
{
LOG(WARNING) << "The number of processed GPS satellites must be between 0 and 31, but it seems that you are processing " << nsats;
nsats = 31;
}
DF006 = std::bitset<5>(nsats);
return 0;
}
int Rtcm::set_DF007(bool divergence_free_smoothing_indicator)
{
// 0 - Divergence-free smoothing not used 1 - Divergence-free smoothing used
DF007 = std::bitset<1>(divergence_free_smoothing_indicator);
return 0;
}
int Rtcm::set_DF008(short int smoothing_interval)
{
DF008 = std::bitset<3>(smoothing_interval);
return 0;
}
int Rtcm::set_DF009(const Gnss_Synchro & gnss_synchro)
{
unsigned int prn_ = gnss_synchro.PRN;
if(prn_ > 31)
{
LOG(WARNING) << "GPS satellite ID must be between 0 and 31, but PRN " << prn_ << " was found";
}
DF009 = std::bitset<6>(prn_);
return 0;
}
int Rtcm::set_DF009(const Gps_Ephemeris & gps_eph)
{
unsigned int prn_ = gps_eph.i_satellite_PRN;
if(prn_ > 31)
{
LOG(WARNING) << "GPS satellite ID must be between 0 and 31, but PRN " << prn_ << " was found";
}
DF009 = std::bitset<6>(prn_);
return 0;
}
int Rtcm::set_DF010(bool code_indicator)
{
DF010 = std::bitset<1>(code_indicator);
return 0;
}
int Rtcm::set_DF011(const Gnss_Synchro & gnss_synchro)
{
double ambiguity = std::floor( gnss_synchro.Pseudorange_m / 299792.458 );
unsigned long int gps_L1_pseudorange = static_cast(std::round(( gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02 ));
DF011 = std::bitset<24>(gps_L1_pseudorange);
return 0;
}
int Rtcm::set_DF012(const Gnss_Synchro & gnss_synchro)
{
const double lambda = GPS_C_m_s / GPS_L1_FREQ_HZ;
double ambiguity = std::floor( gnss_synchro.Pseudorange_m / 299792.458 );
double gps_L1_pseudorange = std::round(( gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02 );
double gps_L1_pseudorange_c = gps_L1_pseudorange * 0.02 + ambiguity * 299792.458;
double L1_phaserange_c = gnss_synchro.Carrier_phase_rads / GPS_TWO_PI;
double L1_phaserange_c_r = std::fmod(L1_phaserange_c - gps_L1_pseudorange_c / lambda + 1500.0, 3000.0) - 1500.0;
long int gps_L1_phaserange_minus_L1_pseudorange = static_cast(std::round(L1_phaserange_c_r * lambda / 0.0005 ));
DF012 = std::bitset<20>(gps_L1_phaserange_minus_L1_pseudorange);
return 0;
}
int Rtcm::set_DF013(const Gps_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
unsigned int lock_time_indicator;
unsigned int lock_time_period_s = Rtcm::lock_time(eph, obs_time, gnss_synchro);
lock_time_indicator = Rtcm::lock_time_indicator(lock_time_period_s);
DF013 = std::bitset<7>(lock_time_indicator);
return 0;
}
int Rtcm::set_DF014(const Gnss_Synchro & gnss_synchro)
{
unsigned int gps_L1_pseudorange_ambiguity = static_cast(std::floor(gnss_synchro.Pseudorange_m / 299792.458));
DF014 = std::bitset<8>(gps_L1_pseudorange_ambiguity);
return 0;
}
int Rtcm::set_DF015(const Gnss_Synchro & gnss_synchro)
{
double CN0_dB_Hz_est = gnss_synchro.CN0_dB_hz;
if (CN0_dB_Hz_est > 63.75)
{
CN0_dB_Hz_est = 63.75;
}
unsigned int CN0_dB_Hz = static_cast(std::round(CN0_dB_Hz_est / 0.25 ));
DF015 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
int Rtcm::set_DF017(const Gnss_Synchro & gnss_synchroL1, const Gnss_Synchro & gnss_synchroL2)
{
double ambiguity = std::floor( gnss_synchroL1.Pseudorange_m / 299792.458 );
double gps_L1_pseudorange = std::round(( gnss_synchroL1.Pseudorange_m - ambiguity * 299792.458) / 0.02 );
double gps_L1_pseudorange_c = gps_L1_pseudorange * 0.02 + ambiguity * 299792.458;
double l2_l1_pseudorange = gnss_synchroL2.Pseudorange_m - gps_L1_pseudorange_c;
int pseudorange_difference = 0xFFFFE000; // invalid value;
if(std::fabs(l2_l1_pseudorange) <= 163.82)
{
pseudorange_difference = static_cast(std::round(l2_l1_pseudorange / 0.02));
}
DF017 = std::bitset<14>(pseudorange_difference);
return 0;
}
int Rtcm::set_DF018(const Gnss_Synchro & gnss_synchroL1, const Gnss_Synchro & gnss_synchroL2)
{
const double lambda2 = GPS_C_m_s / GPS_L2_FREQ_HZ;
int l2_phaserange_minus_l1_pseudorange = 0xFFF80000;
double ambiguity = std::floor( gnss_synchroL1.Pseudorange_m / 299792.458 );
double gps_L1_pseudorange = std::round(( gnss_synchroL1.Pseudorange_m - ambiguity * 299792.458) / 0.02 );
double gps_L1_pseudorange_c = gps_L1_pseudorange * 0.02 + ambiguity * 299792.458;
double L2_phaserange_c = gnss_synchroL2.Carrier_phase_rads / GPS_TWO_PI;
double L1_phaserange_c_r = std::fmod(L2_phaserange_c - gps_L1_pseudorange_c / lambda2 + 1500.0, 3000.0) - 1500.0;
if (std::fabs(L1_phaserange_c_r * lambda2) <= 262.1435 )
{
l2_phaserange_minus_l1_pseudorange = static_cast(std::round(L1_phaserange_c_r * lambda2 / 0.0005));
}
DF018 = std::bitset<20>(l2_phaserange_minus_l1_pseudorange);
return 0;
}
int Rtcm::set_DF019(const Gps_CNAV_Ephemeris & eph, double obs_time, const Gnss_Synchro & gnss_synchro)
{
unsigned int lock_time_indicator;
unsigned int lock_time_period_s = Rtcm::lock_time(eph, obs_time, gnss_synchro);
lock_time_indicator = Rtcm::lock_time_indicator(lock_time_period_s);
DF019 = std::bitset<7>(lock_time_indicator);
return 0;
}
int Rtcm::set_DF020(const Gnss_Synchro & gnss_synchro)
{
double CN0_dB_Hz_est = gnss_synchro.CN0_dB_hz;
if (CN0_dB_Hz_est > 63.75)
{
CN0_dB_Hz_est = 63.75;
}
unsigned int CN0_dB_Hz = static_cast(std::round(CN0_dB_Hz_est / 0.25 ));
DF020 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
int Rtcm::set_DF021()
{
unsigned short int itfr_year = 0;
DF021 = std::bitset<6>(itfr_year);
return 0;
}
int Rtcm::set_DF022(bool gps_indicator)
{
DF022 = std::bitset<1>(gps_indicator);
return 0;
}
int Rtcm::set_DF023(bool glonass_indicator)
{
DF023 = std::bitset<1>(glonass_indicator);
return 0;
}
int Rtcm::set_DF024(bool galileo_indicator)
{
DF024 = std::bitset<1>(galileo_indicator);
return 0;
}
int Rtcm::set_DF025(double antenna_ECEF_X_m)
{
long long int ant_ref_x = static_cast(std::round( antenna_ECEF_X_m * 10000));
DF025 = std::bitset<38>(ant_ref_x);
return 0;
}
int Rtcm::set_DF026(double antenna_ECEF_Y_m)
{
long long int ant_ref_y = static_cast(std::round( antenna_ECEF_Y_m * 10000));
DF026 = std::bitset<38>(ant_ref_y);
return 0;
}
int Rtcm::set_DF027(double antenna_ECEF_Z_m)
{
long long int ant_ref_z = static_cast(std::round( antenna_ECEF_Z_m * 10000));
DF027 = std::bitset<38>(ant_ref_z);
return 0;
}
int Rtcm::set_DF028(double height)
{
unsigned int h_ = static_cast(std::round( height * 10000));
DF028 = std::bitset<16>(h_);
return 0;
}
int Rtcm::set_DF031(unsigned int antenna_setup_id)
{
DF031 = std::bitset<8>(antenna_setup_id);
return 0;
}
int Rtcm::set_DF071(const Gps_Ephemeris & gps_eph)
{
unsigned int iode = static_cast(gps_eph.d_IODE_SF2);
DF071 = std::bitset<8>(iode);
return 0;
}
int Rtcm::set_DF076(const Gps_Ephemeris & gps_eph)
{
unsigned int week_number = static_cast(gps_eph.i_GPS_week);
DF076 = std::bitset<10>(week_number);
return 0;
}
int Rtcm::set_DF077(const Gps_Ephemeris & gps_eph)
{
unsigned short int ura = static_cast(gps_eph.i_SV_accuracy);
DF077 = std::bitset<4>(ura);
return 0;
}
int Rtcm::set_DF078(const Gps_Ephemeris & gps_eph)
{
unsigned short int code_on_L2 = static_cast(gps_eph.i_code_on_L2);
DF078 = std::bitset<2>(code_on_L2);
return 0;
}
int Rtcm::set_DF079(const Gps_Ephemeris & gps_eph)
{
unsigned int idot = static_cast(std::round(gps_eph.d_IDOT / I_DOT_LSB ));
DF079 = std::bitset<14>(idot);
return 0;
}
int Rtcm::set_DF080(const Gps_Ephemeris & gps_eph)
{
unsigned short int iode = static_cast(gps_eph.d_IODE_SF2);
DF080 = std::bitset<8>(iode);
return 0;
}
int Rtcm::set_DF081(const Gps_Ephemeris & gps_eph)
{
unsigned int toc = static_cast(std::round(gps_eph.d_Toc / T_OC_LSB ));
DF081 = std::bitset<16>(toc);
return 0;
}
int Rtcm::set_DF082(const Gps_Ephemeris & gps_eph)
{
short int af2 = static_cast(std::round(gps_eph.d_A_f2 / A_F2_LSB ));
DF082 = std::bitset<8>(af2);
return 0;
}
int Rtcm::set_DF083(const Gps_Ephemeris & gps_eph)
{
int af1 = static_cast(std::round(gps_eph.d_A_f1 / A_F1_LSB ));
DF083 = std::bitset<16>(af1);
return 0;
}
int Rtcm::set_DF084(const Gps_Ephemeris & gps_eph)
{
long int af0 = static_cast(std::round(gps_eph.d_A_f0 / A_F0_LSB ));
DF084 = std::bitset<22>(af0);
return 0;
}
int Rtcm::set_DF085(const Gps_Ephemeris & gps_eph)
{
unsigned int iodc = static_cast(gps_eph.d_IODC);
DF085 = std::bitset<10>(iodc);
return 0;
}
int Rtcm::set_DF086(const Gps_Ephemeris & gps_eph)
{
int crs = static_cast(std::round(gps_eph.d_Crs / C_RS_LSB ));
DF086 = std::bitset<16>(crs);
return 0;
}
int Rtcm::set_DF087(const Gps_Ephemeris & gps_eph)
{
int delta_n = static_cast(std::round(gps_eph.d_Delta_n / DELTA_N_LSB ));
DF087 = std::bitset<16>(delta_n);
return 0;
}
int Rtcm::set_DF088(const Gps_Ephemeris & gps_eph)
{
long int m0 = static_cast(std::round(gps_eph.d_M_0 / M_0_LSB ));
DF088 = std::bitset<32>(m0);
return 0;
}
int Rtcm::set_DF089(const Gps_Ephemeris & gps_eph)
{
int cuc = static_cast(std::round(gps_eph.d_Cuc / C_UC_LSB ));
DF089 = std::bitset<16>(cuc);
return 0;
}
int Rtcm::set_DF090(const Gps_Ephemeris & gps_eph)
{
unsigned long int ecc = static_cast(std::round(gps_eph.d_e_eccentricity / E_LSB ));
DF090 = std::bitset<32>(ecc);
return 0;
}
int Rtcm::set_DF091(const Gps_Ephemeris & gps_eph)
{
int cus = static_cast(std::round(gps_eph.d_Cus / C_US_LSB ));
DF091 = std::bitset<16>(cus);
return 0;
}
int Rtcm::set_DF092(const Gps_Ephemeris & gps_eph)
{
unsigned long int sqr_a = static_cast(std::round(gps_eph.d_sqrt_A / SQRT_A_LSB ));
DF092 = std::bitset<32>(sqr_a);
return 0;
}
int Rtcm::set_DF093(const Gps_Ephemeris & gps_eph)
{
unsigned int toe = static_cast(std::round(gps_eph.d_Toe / T_OE_LSB ));
DF093 = std::bitset<16>(toe);
return 0;
}
int Rtcm::set_DF094(const Gps_Ephemeris & gps_eph)
{
int cic = static_cast(std::round(gps_eph.d_Cic / C_IC_LSB ));
DF094 = std::bitset<16>(cic);
return 0;
}
int Rtcm::set_DF095(const Gps_Ephemeris & gps_eph)
{
long int Omega0 = static_cast(std::round(gps_eph.d_OMEGA0 / OMEGA_0_LSB ));
DF095 = std::bitset<32>(Omega0);
return 0;
}
int Rtcm::set_DF096(const Gps_Ephemeris & gps_eph)
{
int cis = static_cast(std::round(gps_eph.d_Cis / C_IS_LSB ));
DF096 = std::bitset<16>(cis);
return 0;
}
int Rtcm::set_DF097(const Gps_Ephemeris & gps_eph)
{
long int i0 = static_cast(std::round(gps_eph.d_i_0 / I_0_LSB ));
DF097 = std::bitset<32>(i0);
return 0;
}
int Rtcm::set_DF098(const Gps_Ephemeris & gps_eph)
{
int crc = static_cast(std::round(gps_eph.d_Crc / C_RC_LSB ));
DF098 = std::bitset<16>(crc);
return 0;
}
int Rtcm::set_DF099(const Gps_Ephemeris & gps_eph)
{
long int omega = static_cast(std::round(gps_eph.d_OMEGA / OMEGA_LSB ));
DF099 = std::bitset<32>(omega);
return 0;
}
int Rtcm::set_DF100(const Gps_Ephemeris & gps_eph)
{
long int omegadot = static_cast(std::round(gps_eph.d_OMEGA_DOT / OMEGA_DOT_LSB ));
DF100 = std::bitset<24>(omegadot);
return 0;
}
int Rtcm::set_DF101(const Gps_Ephemeris & gps_eph)
{
short int tgd = static_cast(std::round(gps_eph.d_TGD / T_GD_LSB ));
DF101 = std::bitset<8>(tgd);
return 0;
}
int Rtcm::set_DF102(const Gps_Ephemeris & gps_eph)
{
unsigned short int sv_heath = static_cast(gps_eph.i_SV_health);
DF102 = std::bitset<6>(sv_heath);
return 0;
}
int Rtcm::set_DF103(const Gps_Ephemeris & gps_eph)
{
DF103 = std::bitset<1>(gps_eph.b_L2_P_data_flag);
return 0;
}
int Rtcm::set_DF137(const Gps_Ephemeris & gps_eph)
{
DF137 = std::bitset<1>(gps_eph.b_fit_interval_flag);
return 0;
}
int Rtcm::set_DF248(const Galileo_Ephemeris & gal_eph, double obs_time)
{
// TOW in milliseconds from the beginning of the Galileo week, measured in Galileo time
unsigned long int tow = static_cast(std::round((obs_time + 604800 * static_cast(gal_eph.WN_5)) * 1000));
if(tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
tow = 604799999;
}
DF248 = std::bitset<30>(tow);
return 0;
}
int Rtcm::set_DF252(const Galileo_Ephemeris & gal_eph)
{
unsigned int prn_ = gal_eph.i_satellite_PRN;
if(prn_ > 63)
{
LOG(WARNING) << "Galileo satellite ID must be between 0 and 63, but PRN " << prn_ << " was found";
}
DF252 = std::bitset<6>(prn_);
return 0;
}
int Rtcm::set_DF289(const Galileo_Ephemeris & gal_eph)
{
unsigned int galileo_week_number = static_cast(gal_eph.WN_5);
if(galileo_week_number > 4095)
{
LOG(WARNING) << "Error decoding Galileo week number (it has a 4096 roll-off, but " << galileo_week_number << " was detected)";
}
DF289 = std::bitset<12>(galileo_week_number);
return 0;
}
int Rtcm::set_DF290(const Galileo_Ephemeris & gal_eph)
{
unsigned int iod_nav = static_cast(gal_eph.IOD_nav_1);
if(iod_nav > 1023)
{
LOG(WARNING) << "Error decoding Galileo IODnav (it has a max of 1023, but " << iod_nav << " was detected)";
}
DF290 = std::bitset<10>(iod_nav);
return 0;
}
int Rtcm::set_DF291(const Galileo_Ephemeris & gal_eph)
{
unsigned short int SISA = static_cast(gal_eph.SISA_3);
//SISA = 0; // SIS Accuracy, data content definition not given in Galileo OS SIS ICD, Issue 1.1, Sept 2010
DF291 = std::bitset<8>(SISA);
return 0;
}
int Rtcm::set_DF292(const Galileo_Ephemeris & gal_eph)
{
int idot = static_cast(std::round(gal_eph.iDot_2 / FNAV_idot_2_LSB));
DF292 = std::bitset<14>(idot);
return 0;
}
int Rtcm::set_DF293(const Galileo_Ephemeris & gal_eph)
{
unsigned int toc = static_cast