% /*! % * \file plot_acq_grid_gsoc.m % * \brief Read GNSS-SDR Acquisition dump binary file using the provided % function and plot acquisition grid of acquisition statistic of PRN sat % % This function analyzes a experiment performed by Luis Esteve in the framework % of the Google Summer of Code (GSoC) 2012, with the collaboration of Javier Arribas % and Carles Fernández, related to the extension of GNSS-SDR to Galileo. % % * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com % * ------------------------------------------------------------------------- % * % * Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors) % * % * GNSS-SDR is a software defined Global Navigation % * Satellite Systems receiver % * % * This file is part of GNSS-SDR. % * % * GNSS-SDR is free software: you can redistribute it and/or modify % * it under the terms of the GNU General Public License as published by % * the Free Software Foundation, either version 3 of the License, or % * at your option) any later version. % * % * GNSS-SDR is distributed in the hope that it will be useful, % * but WITHOUT ANY WARRANTY; without even the implied warranty of % * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % * GNU General Public License for more details. % * % * You should have received a copy of the GNU General Public License % * along with GNSS-SDR. If not, see . % * % * ------------------------------------------------------------------------- % */ function plot_acq_grid_gsoc_e5(sat) file=['test_statistics_E_5I_sat_' num2str(sat) '_doppler_0.dat']; sampling_freq_Hz=12E6 Doppler_max_Hz = 9875 Doppler_min_Hz = -10000 Doppler_step_Hz = 125 % read files %x=read_complex_binary (file); x=load_complex_data(file); l_y=length(x); Doppler_axes=Doppler_min_Hz:Doppler_step_Hz:Doppler_max_Hz; l_x=length(Doppler_axes); acq_grid = zeros(l_x,l_y); index=0; for k=Doppler_min_Hz:Doppler_step_Hz:Doppler_max_Hz index=index+1; filename=['test_statistics_E_5I_sat_' num2str(sat) '_doppler_' num2str(k) '.dat']; acq_grid(index,:)=abs(read_complex_binary (filename)); end maximum_correlation_peak = max(max(acq_grid)) [fila,col]=find(acq_grid==max(max(acq_grid))); delay_error_sps = col -1 Doppler_error_Hz = Doppler_axes(fila) noise_grid=acq_grid; delay_span=floor(3*sampling_freq_Hz/(1.023e6)); Doppler_span=floor(500/Doppler_step_Hz); noise_grid(fila-Doppler_span:fila+Doppler_span,col-delay_span:col+delay_span)=0; n=numel(noise_grid)-(2*delay_span+1)*(2*Doppler_span+1); noise_floor= sum(sum(noise_grid))/n Gain_dbs = 10*log10(maximum_correlation_peak/noise_floor) %% Plot 3D FULL RESOLUTION [X,Y] = meshgrid(Doppler_axes,1:1:l_y); figure; surf(X,Y,acq_grid'); xlabel('Doppler(Hz)');ylabel('Code Delay(samples)');title(['GLRT statistic of Galileo Parallel Code Phase Search Acquisition. Local replica: E5a-I PRN ' num2str(sat)]); end function x=load_complex_data(file) %fid = fopen(file,'r'); fid = fopen('signal_source.dat','r'); k=1; tline=fgetl(fid); %while (~feof(fid)) while (ischar(tline)) %x(k,1:2) = fread(fid, 2, 'float'); a=strplit(tline); disp(a); tline=fgetl(fid); k=k+1; if k==12000 end end end