/*! * \file beidou_dnav_navigation_message.h * \brief Interface of a BeiDou DNAV Data message decoder * \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.com * \author Damian Miralles, 2018. dmiralles2009@gmail.com * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #ifndef GNSS_SDR_BEIDOU_DNAV_NAVIGATION_MESSAGE_H_ #define GNSS_SDR_BEIDOU_DNAV_NAVIGATION_MESSAGE_H_ #include "Beidou_B1I.h" #include "Beidou_B3I.h" #include "Beidou_DNAV.h" #include "beidou_dnav_almanac.h" #include "beidou_dnav_ephemeris.h" #include "beidou_dnav_iono.h" #include "beidou_dnav_utc_model.h" #include #include #include #include #include #include /*! * \brief This class decodes a BeiDou D1 NAV Data message */ class Beidou_Dnav_Navigation_Message { public: /*! * Default constructor */ Beidou_Dnav_Navigation_Message(); // System flags for data processing bool flag_eph_valid; bool flag_utc_model_valid; bool flag_iono_valid; bool flag_d1_sf1; bool flag_d1_sf2; bool flag_d1_sf3; bool flag_d1_sf4; bool flag_d1_sf5; bool flag_new_SOW_available; bool flag_crc_test; double d_previous_aode; bool flag_d1_sf5_p7; //!< D1 NAV Message, Subframe 5, Page 09 decoded indicator bool flag_d1_sf5_p8; //!< D1 NAV Message, Subframe 5, Page 09 decoded indicator bool flag_d1_sf5_p9; //!< D1 NAV Message, Subframe 5, Page 09 decoded indicator bool flag_d1_sf5_p10; //!< D1 NAV Message, Subframe 5, Page 10 decoded indicator bool flag_sf1_p1; //!< D2 NAV Message, Subframe 1, Page 1 decoded indicator bool flag_sf1_p2; //!< D2 NAV Message, Subframe 1, Page 2 decoded indicator bool flag_sf1_p3; //!< D2 NAV Message, Subframe 1, Page 3 decoded indicator bool flag_sf1_p4; //!< D2 NAV Message, Subframe 1, Page 4 decoded indicator bool flag_sf1_p5; //!< D2 NAV Message, Subframe 1, Page 5 decoded indicator bool flag_sf1_p6; //!< D2 NAV Message, Subframe 1, Page 6 decoded indicator bool flag_sf1_p7; //!< D2 NAV Message, Subframe 1, Page 7 decoded indicator bool flag_sf1_p8; //!< D2 NAV Message, Subframe 1, Page 8 decoded indicator bool flag_sf1_p9; //!< D2 NAV Message, Subframe 1, Page 9 decoded indicator bool flag_sf1_p10; //!< D2 NAV Message, Subframe 1, Page 10 decoded indicator // broadcast orbit 1 double d_SOW; //!< Time of BeiDou Week of the ephemeris set (taken from subframes SOW) [s] double d_SOW_SF1; //!< Time of BeiDou Week from HOW word of Subframe 1 [s] double d_SOW_SF2; //!< Time of BeiDou Week from HOW word of Subframe 2 [s] double d_SOW_SF3; //!< Time of BeiDou Week from HOW word of Subframe 3 [s] double d_SOW_SF4; //!< Time of BeiDou Week from HOW word of Subframe 4 [s] double d_SOW_SF5; //!< Time of BeiDou Week from HOW word of Subframe 5 [s] double d_AODE; double d_Crs; //!< Amplitude of the Sine Harmonic Correction Term to the Orbit Radius [m] double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s] double d_M_0; //!< Mean Anomaly at Reference Time [semi-circles] // broadcast orbit 2 double d_Cuc; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] double d_eccentricity; //!< Eccentricity [dimensionless] double d_Cus; //!< Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude [rad] double d_sqrt_A; //!< Square Root of the Semi-Major Axis [sqrt(m)] // broadcast orbit 3 double d_Toe_sf2; //!< Ephemeris data reference time of week in subframe 2, D1 Message double d_Toe_sf3; //!< Ephemeris data reference time of week in subframe 3, D1 Message double d_Toe; //!< Ephemeris data reference time of week in subframe 1, D2 Message double d_Toc; //!< clock data reference time [s] double d_Cic; //!< Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination [rad] double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-circles] double d_Cis; //!< Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination [rad] // broadcast orbit 4 double d_i_0; //!< Inclination Angle at Reference Time [semi-circles] double d_Crc; //!< Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius [m] double d_OMEGA; //!< Argument of Perigee [semi-cicles] double d_OMEGA_DOT; //!< Rate of Right Ascension [semi-circles/s] // broadcast orbit 5 double d_IDOT; //!< Rate of Inclination Angle [semi-circles/s] int32_t i_BEIDOU_week; //!< BeiDou week number, aka WN [week] // broadcast orbit 6 int32_t i_SV_accuracy; //!< User Range Accuracy (URA) index of the SV int32_t i_SV_health; double d_TGD1; //!< Estimated Group Delay Differential in B1 [s] double d_TGD2; //!< Estimated Group Delay Differential in B2 [s] double d_AODC; //!< Age of Data, Clock // broadcast orbit 7 // int32_t i_AODO; //!< Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s] bool b_fit_interval_flag; //!< indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours. double d_spare1; double d_spare2; double d_A_f0; //!< Clock correction parameters. Coefficient 0 of code phase offset model [s] double d_A_f1; //!< Clock correction parameters. Coefficient 1 of code phase offset model [s/s] double d_A_f2; //!< Clock correction parameters. Coefficient 2 of code phase offset model [s/s^2] // D2 NAV Message Decoding uint64_t d_A_f1_msb_bits; //!< Clock correction parameters, D2 NAV MSB uint64_t d_A_f1_lsb_bits; //!< Clock correction parameters, D2 NAV LSB uint64_t d_Cuc_msb_bits; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] uint64_t d_Cuc_lsb_bits; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] uint64_t d_eccentricity_msb; //!< Eccentricity [dimensionless] uint64_t d_eccentricity_lsb; //!< Eccentricity [dimensionless] uint64_t d_Cic_msb_bits; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] uint64_t d_Cic_lsb_bits; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] uint64_t d_eccentricity_msb_bits; //!< Eccentricity [dimensionless] uint64_t d_eccentricity_lsb_bits; uint64_t d_i_0_msb_bits; //!< Inclination Angle at Reference Time [semi-circles] uint64_t d_i_0_lsb_bits; //!< Inclination Angle at Reference Time [semi-circles] uint64_t d_OMEGA_msb_bits; //!< Argument of Perigee [semi-cicles] uint64_t d_OMEGA_lsb_bits; //!< Argument of Perigee [semi-cicles] uint64_t d_OMEGA_DOT_msb_bits; //!< Rate of Right Ascension [semi-circles/s] uint64_t d_OMEGA_DOT_lsb_bits; //!< Rate of Right Ascension [semi-circles/s] // Almanac double d_Toa; //!< Almanac reference time [s] int32_t i_WN_A; //!< Modulo 256 of the GPS week number to which the almanac reference time (d_Toa) is referenced std::map almanacHealth; //!< Map that stores the health information stored in the almanac std::map satelliteBlock; //!< Map that stores to which block the PRN belongs // Flags /*! \brief If true, enhanced level of integrity assurance. * * If false, indicates that the conveying signal is provided with the legacy level of integrity assurance. * That is, the probability that the instantaneous URE of the conveying signal exceeds 4.42 times the upper bound * value of the current broadcast URA index, for more than 5.2 seconds, without an accompanying alert, is less * than 1E-5 per hour. If true, indicates that the conveying signal is provided with an enhanced level of * integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 5.73 * times the upper bound value of the current broadcast URA index, for more than 5.2 seconds, without an * accompanying alert, is less than 1E-8 per hour. */ bool b_integrity_status_flag; bool b_alert_flag; //!< If true, indicates that the SV URA may be worse than indicated in d_SV_accuracy, use that SV at our own risk. bool b_antispoofing_flag; //!< If true, the AntiSpoofing mode is ON in that SV // clock terms // double d_master_clock; // GPS transmission time double d_satClkCorr; // GPS clock error double d_dtr; // relativistic clock correction term double d_satClkDrift; // satellite positions double d_satpos_X; //!< Earth-fixed coordinate x of the satellite [m]. Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. double d_satpos_Y; //!< Earth-fixed coordinate y of the satellite [m]. Completes a right-handed, Earth-Centered, Earth-Fixed orthogonal coordinate system. double d_satpos_Z; //!< Earth-fixed coordinate z of the satellite [m]. The direction of the IERS (International Earth Rotation and Reference Systems Service) Reference Pole (IRP). // satellite identification info int32_t i_channel_ID; int32_t i_signal_type; //!< BDS: data source (0:unknown,1:B1I,2:B1Q,3:B2I,4:B2Q,5:B3I,6:B3Q) uint32_t i_satellite_PRN; // time synchro double d_subframe_timestamp_ms; // [ms] // Ionospheric parameters double d_alpha0; //!< Coefficient 0 of a cubic equation representing the amplitude of the vertical delay [s] double d_alpha1; //!< Coefficient 1 of a cubic equation representing the amplitude of the vertical delay [s/semi-circle] double d_alpha2; //!< Coefficient 2 of a cubic equation representing the amplitude of the vertical delay [s(semi-circle)^2] double d_alpha3; //!< Coefficient 3 of a cubic equation representing the amplitude of the vertical delay [s(semi-circle)^3] double d_beta0; //!< Coefficient 0 of a cubic equation representing the period of the model [s] double d_beta1; //!< Coefficient 1 of a cubic equation representing the period of the model [s/semi-circle] double d_beta2; //!< Coefficient 2 of a cubic equation representing the period of the model [s(semi-circle)^2] double d_beta3; //!< Coefficient 3 of a cubic equation representing the period of the model [s(semi-circle)^3] // UTC parameters double d_A1UTC; //!< 1st order term of a model that relates GPS and UTC time [s/s] double d_A0UTC; //!< Constant of a model that relates GPS and UTC time [s] double d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac. int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks] int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days] double d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s] double d_A1GPS; double d_A0GPS; double d_A1GAL; double d_A0GAL; double d_A1GLO; double d_A0GLO; double d_SQRT_A_ALMANAC; double d_A1_ALMANAC; double d_A0_ALMANAC; double d_OMEGA0_ALMANAC; double d_E_ALMANAC; double d_DELTA_I; double d_TOA; double d_OMEGA_DOT_ALMANAC; double d_OMEGA_ALMANAC; double d_M0_ALMANAC; int32_t almanac_WN; double d_toa2; // Satellite velocity double d_satvel_X; //!< Earth-fixed velocity coordinate x of the satellite [m] double d_satvel_Y; //!< Earth-fixed velocity coordinate y of the satellite [m] double d_satvel_Z; //!< Earth-fixed velocity coordinate z of the satellite [m] // public functions void reset(); /*! * \brief Obtain a BDS SV Ephemeris class filled with current SV data */ Beidou_Dnav_Ephemeris get_ephemeris(); /*! * \brief Obtain a BDS ionospheric correction parameters class filled with current SV data */ Beidou_Dnav_Iono get_iono(); /*! * \brief Obtain a BDS UTC model parameters class filled with current SV data */ Beidou_Dnav_Utc_Model get_utc_model(); /*! * \brief Decodes the BDS D1 NAV message */ int32_t d1_subframe_decoder(std::string const& subframe); /*! * \brief Decodes the BDS D2 NAV message */ int32_t d2_subframe_decoder(std::string const& subframe); /*! * \brief Computes the position of the satellite */ void satellitePosition(double transmitTime); /*! * \brief Sets (\a d_satClkCorr) according to the User Algorithm for SV Clock Correction * and returns the corrected clock */ double sv_clock_correction(double transmitTime); /*! * \brief Computes the Coordinated Universal Time (UTC) and * returns it in [s] */ double utc_time(const double beidoutime_corrected) const; bool satellite_validation(); /*! * \brief Returns true if new Ephemeris has arrived. The flag is set to false when the function is executed */ bool have_new_ephemeris(); /*! * \brief Returns true if new Iono model has arrived. The flag is set to false when the function is executed */ bool have_new_iono(); /*! * \brief Returns true if new UTC model has arrived. The flag is set to false when the function is executed */ bool have_new_utc_model(); /*! * \brief Returns true if new UTC model has arrived. The flag is set to false when the function is executed */ bool have_new_almanac(); private: uint64_t read_navigation_unsigned(std::bitset bits, const std::vector>& parameter); int64_t read_navigation_signed(std::bitset bits, const std::vector>& parameter); bool read_navigation_bool(std::bitset bits, const std::vector>& parameter); void print_beidou_word_bytes(uint32_t BEIDOU_word); /* * Accounts for the beginning or end of week crossover * * \param[in] - time in seconds * \param[out] - corrected time, in seconds */ double check_t(double time); }; #endif