/*! * \file volk_gnsssdr_32f_sincos_32fc.h * \brief VOLK_GNSSSDR kernel: Computes the sine and cosine of a vector of floats. * \authors * * VOLK_GNSSSDR kernel that computes the sine and cosine of a vector of floats. * * ------------------------------------------------------------------------- * * Copyright (C) 2007 Julien Pommier * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * (this is the zlib license) */ /*! * \page volk_gnsssdr_32f_sincos_32fc * * \b Overview * * VOLK_GNSSSDR kernel that computes the sine and cosine of a vector * of floats, providing the output in a complex vector (cosine, sine). * WARNING: it is not IEEE compliant, but the max absolute error on sines is 2^-24 on the range [-8192, 8192]. * * Dispatcher Prototype * \code * void volk_gnsssdr_32f_sincos_32fc(lv_32fc_t* out, const float* in, unsigned int num_points) * \endcode * * \b Inputs * \li in: Vector of floats, in radians. * \li num_points: Number of components in \p in to be computed. * * \b Outputs * \li out: Vector of the form lv_32fc_t out[n] = lv_cmake(cos(in[n]), sin(in[n])) * * Adapted from http://gruntthepeon.free.fr/ssemath/sse_mathfun.h, original code from Julien Pommier * Based on algorithms from the cephes library https://www.netlib.org/cephes/ */ #ifndef INCLUDED_volk_gnsssdr_32f_sincos_32fc_H #define INCLUDED_volk_gnsssdr_32f_sincos_32fc_H #include #include #include #ifdef LV_HAVE_SSE4_1 #include /* Adapted from the original VOLK for comparison purposes. * In turn based on algorithms from: * Naoki Shibata, "Efficient Evaluation Methods of Elementary Functions Suitable for SIMD Computation," * Computer Science Research and Development, May 2010, Volume 25, Issue 1, pp 25-32. DOI 10.1007/s00450-010-0108-2 */ static inline void volk_gnsssdr_32f_sincos_32fc_u_sse4_1(lv_32fc_t* out, const float* in, unsigned int num_points) { lv_32fc_t* bPtr = out; const float* aPtr = in; unsigned int number = 0; unsigned int quarterPoints = num_points / 4; unsigned int i = 0; __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes; __m128 sine, cosine, condition1, condition2, condition3, cplxValue; __m128i q, r, ones, twos, fours; m4pi = _mm_set1_ps(1.273239545); pio4A = _mm_set1_ps(0.78515625); pio4B = _mm_set1_ps(0.241876e-3); ffours = _mm_set1_ps(4.0); ftwos = _mm_set1_ps(2.0); fones = _mm_set1_ps(1.0); fzeroes = _mm_setzero_ps(); ones = _mm_set1_epi32(1); twos = _mm_set1_epi32(2); fours = _mm_set1_epi32(4); cp1 = _mm_set1_ps(1.0); cp2 = _mm_set1_ps(0.83333333e-1); cp3 = _mm_set1_ps(0.2777778e-2); cp4 = _mm_set1_ps(0.49603e-4); cp5 = _mm_set1_ps(0.551e-6); for (; number < quarterPoints; number++) { aVal = _mm_loadu_ps(aPtr); __VOLK_GNSSSDR_PREFETCH(aPtr + 8); s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes))); q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi))); r = _mm_add_epi32(q, _mm_and_si128(q, ones)); s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A)); s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B)); s = _mm_div_ps(s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction s = _mm_mul_ps(s, s); // Evaluate Taylor series s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s); for (i = 0; i < 3; i++) { s = _mm_mul_ps(s, _mm_sub_ps(ffours, s)); } s = _mm_div_ps(s, ftwos); sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s)); cosine = _mm_sub_ps(fones, s); condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes); condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes)); condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes); cplxValue = sine; sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1)); sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2)); cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(cplxValue, cosine), condition1)); cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3)); cplxValue = _mm_unpacklo_ps(cosine, sine); _mm_storeu_ps((float*)bPtr, cplxValue); bPtr += 2; cplxValue = _mm_unpackhi_ps(cosine, sine); _mm_storeu_ps((float*)bPtr, cplxValue); bPtr += 2; aPtr += 4; } number = quarterPoints * 4; for (; number < num_points; number++) { float _in = *aPtr++; *bPtr++ = lv_cmake(cosf(_in), sinf(_in)); } } #endif /* LV_HAVE_SSE4_1 for unaligned */ #ifdef LV_HAVE_SSE4_1 #include /* Adapted from the original VOLK for comparison purposes. * In turn based on algorithms from: * Naoki Shibata, "Efficient Evaluation Methods of Elementary Functions Suitable for SIMD Computation," * Computer Science Research and Development, May 2010, Volume 25, Issue 1, pp 25-32. DOI 10.1007/s00450-010-0108-2 */ static inline void volk_gnsssdr_32f_sincos_32fc_a_sse4_1(lv_32fc_t* out, const float* in, unsigned int num_points) { lv_32fc_t* bPtr = out; const float* aPtr = in; unsigned int number = 0; unsigned int quarterPoints = num_points / 4; unsigned int i = 0; __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes; __m128 sine, cosine, condition1, condition2, condition3, cplxValue; __m128i q, r, ones, twos, fours; m4pi = _mm_set1_ps(1.273239545); pio4A = _mm_set1_ps(0.78515625); pio4B = _mm_set1_ps(0.241876e-3); ffours = _mm_set1_ps(4.0); ftwos = _mm_set1_ps(2.0); fones = _mm_set1_ps(1.0); fzeroes = _mm_setzero_ps(); ones = _mm_set1_epi32(1); twos = _mm_set1_epi32(2); fours = _mm_set1_epi32(4); cp1 = _mm_set1_ps(1.0); cp2 = _mm_set1_ps(0.83333333e-1); cp3 = _mm_set1_ps(0.2777778e-2); cp4 = _mm_set1_ps(0.49603e-4); cp5 = _mm_set1_ps(0.551e-6); for (; number < quarterPoints; number++) { aVal = _mm_load_ps(aPtr); __VOLK_GNSSSDR_PREFETCH(aPtr + 8); s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes))); q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi))); r = _mm_add_epi32(q, _mm_and_si128(q, ones)); s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A)); s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B)); s = _mm_div_ps(s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction s = _mm_mul_ps(s, s); // Evaluate Taylor series s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s); for (i = 0; i < 3; i++) { s = _mm_mul_ps(s, _mm_sub_ps(ffours, s)); } s = _mm_div_ps(s, ftwos); sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s)); cosine = _mm_sub_ps(fones, s); condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes); condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes)); condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes); cplxValue = sine; sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1)); sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2)); cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(cplxValue, cosine), condition1)); cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3)); cplxValue = _mm_unpacklo_ps(cosine, sine); _mm_store_ps((float*)bPtr, cplxValue); bPtr += 2; cplxValue = _mm_unpackhi_ps(cosine, sine); _mm_store_ps((float*)bPtr, cplxValue); bPtr += 2; aPtr += 4; } number = quarterPoints * 4; for (; number < num_points; number++) { float _in = *aPtr++; *bPtr++ = lv_cmake(cosf(_in), sinf(_in)); } } #endif /* LV_HAVE_SSE4_1 for aligned */ #ifdef LV_HAVE_SSE2 #include static inline void volk_gnsssdr_32f_sincos_32fc_a_sse2(lv_32fc_t* out, const float* in, unsigned int num_points) { lv_32fc_t* bPtr = out; const float* aPtr = in; const unsigned int sse_iters = num_points / 4; unsigned int number = 0; float _in; __m128 sine, cosine, aux, x; __m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y; __m128i emm0, emm2, emm4; /* declare some SSE constants */ __VOLK_ATTR_ALIGNED(16) static const int _ps_inv_sign_mask[4] = {~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000}; __VOLK_ATTR_ALIGNED(16) static const int _ps_sign_mask[4] = {(int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000}; __VOLK_ATTR_ALIGNED(16) static const float _ps_cephes_FOPI[4] = {1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_1[4] = {1, 1, 1, 1}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_inv1[4] = {~1, ~1, ~1, ~1}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_2[4] = {2, 2, 2, 2}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_4[4] = {4, 4, 4, 4}; __VOLK_ATTR_ALIGNED(16) static const float _ps_minus_cephes_DP1[4] = {-0.78515625, -0.78515625, -0.78515625, -0.78515625}; __VOLK_ATTR_ALIGNED(16) static const float _ps_minus_cephes_DP2[4] = {-2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4}; __VOLK_ATTR_ALIGNED(16) static const float _ps_minus_cephes_DP3[4] = {-3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8}; __VOLK_ATTR_ALIGNED(16) static const float _ps_coscof_p0[4] = {2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005}; __VOLK_ATTR_ALIGNED(16) static const float _ps_coscof_p1[4] = {-1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003}; __VOLK_ATTR_ALIGNED(16) static const float _ps_coscof_p2[4] = {4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002}; __VOLK_ATTR_ALIGNED(16) static const float _ps_sincof_p0[4] = {-1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4}; __VOLK_ATTR_ALIGNED(16) static const float _ps_sincof_p1[4] = {8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3}; __VOLK_ATTR_ALIGNED(16) static const float _ps_sincof_p2[4] = {-1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1}; __VOLK_ATTR_ALIGNED(16) static const float _ps_0p5[4] = {0.5f, 0.5f, 0.5f, 0.5f}; __VOLK_ATTR_ALIGNED(16) static const float _ps_1[4] = {1.0f, 1.0f, 1.0f, 1.0f}; for (; number < sse_iters; number++) { x = _mm_load_ps(aPtr); __VOLK_GNSSSDR_PREFETCH(aPtr + 8); sign_bit_sin = x; /* take the absolute value */ x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask); /* extract the sign bit (upper one) */ sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask); /* scale by 4/Pi */ y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI); /* store the integer part of y in emm2 */ emm2 = _mm_cvttps_epi32(y); /* j=(j+1) & (~1) (see the cephes sources) */ emm2 = _mm_add_epi32(emm2, *(__m128i*)_pi32_1); emm2 = _mm_and_si128(emm2, *(__m128i*)_pi32_inv1); y = _mm_cvtepi32_ps(emm2); emm4 = emm2; /* get the swap sign flag for the sine */ emm0 = _mm_and_si128(emm2, *(__m128i*)_pi32_4); emm0 = _mm_slli_epi32(emm0, 29); __m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0); /* get the polynom selection mask for the sine*/ emm2 = _mm_and_si128(emm2, *(__m128i*)_pi32_2); emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); __m128 poly_mask = _mm_castsi128_ps(emm2); /* The magic pass: "Extended precision modular arithmetic” x = ((x - y * DP1) - y * DP2) - y * DP3; */ xmm1 = *(__m128*)_ps_minus_cephes_DP1; xmm2 = *(__m128*)_ps_minus_cephes_DP2; xmm3 = *(__m128*)_ps_minus_cephes_DP3; xmm1 = _mm_mul_ps(y, xmm1); xmm2 = _mm_mul_ps(y, xmm2); xmm3 = _mm_mul_ps(y, xmm3); x = _mm_add_ps(x, xmm1); x = _mm_add_ps(x, xmm2); x = _mm_add_ps(x, xmm3); emm4 = _mm_sub_epi32(emm4, *(__m128i*)_pi32_2); emm4 = _mm_andnot_si128(emm4, *(__m128i*)_pi32_4); emm4 = _mm_slli_epi32(emm4, 29); __m128 sign_bit_cos = _mm_castsi128_ps(emm4); sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin); /* Evaluate the first polynom (0 <= x <= Pi/4) */ __m128 z = _mm_mul_ps(x, x); y = *(__m128*)_ps_coscof_p0; y = _mm_mul_ps(y, z); y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1); y = _mm_mul_ps(y, z); y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2); y = _mm_mul_ps(y, z); y = _mm_mul_ps(y, z); __m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5); y = _mm_sub_ps(y, tmp); y = _mm_add_ps(y, *(__m128*)_ps_1); /* Evaluate the second polynom (Pi/4 <= x <= 0) */ __m128 y2 = *(__m128*)_ps_sincof_p0; y2 = _mm_mul_ps(y2, z); y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1); y2 = _mm_mul_ps(y2, z); y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2); y2 = _mm_mul_ps(y2, z); y2 = _mm_mul_ps(y2, x); y2 = _mm_add_ps(y2, x); /* select the correct result from the two polynoms */ xmm3 = poly_mask; __m128 ysin2 = _mm_and_ps(xmm3, y2); __m128 ysin1 = _mm_andnot_ps(xmm3, y); y2 = _mm_sub_ps(y2, ysin2); y = _mm_sub_ps(y, ysin1); xmm1 = _mm_add_ps(ysin1, ysin2); xmm2 = _mm_add_ps(y, y2); /* update the sign */ sine = _mm_xor_ps(xmm1, sign_bit_sin); cosine = _mm_xor_ps(xmm2, sign_bit_cos); /* write the output */ aux = _mm_unpacklo_ps(cosine, sine); _mm_store_ps((float*)bPtr, aux); bPtr += 2; aux = _mm_unpackhi_ps(cosine, sine); _mm_store_ps((float*)bPtr, aux); bPtr += 2; aPtr += 4; } for (number = sse_iters * 4; number < num_points; number++) { _in = *aPtr++; *bPtr++ = lv_cmake((float)cosf(_in), (float)sinf(_in)); } } #endif /* LV_HAVE_SSE2 */ #ifdef LV_HAVE_SSE2 #include static inline void volk_gnsssdr_32f_sincos_32fc_u_sse2(lv_32fc_t* out, const float* in, unsigned int num_points) { lv_32fc_t* bPtr = out; const float* aPtr = in; const unsigned int sse_iters = num_points / 4; unsigned int number = 0; float _in; __m128 sine, cosine, aux, x; __m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y; __m128i emm0, emm2, emm4; /* declare some SSE constants */ __VOLK_ATTR_ALIGNED(16) static const int _ps_inv_sign_mask[4] = {~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000}; __VOLK_ATTR_ALIGNED(16) static const int _ps_sign_mask[4] = {(int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000}; __VOLK_ATTR_ALIGNED(16) static const float _ps_cephes_FOPI[4] = {1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_1[4] = {1, 1, 1, 1}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_inv1[4] = {~1, ~1, ~1, ~1}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_2[4] = {2, 2, 2, 2}; __VOLK_ATTR_ALIGNED(16) static const int _pi32_4[4] = {4, 4, 4, 4}; __VOLK_ATTR_ALIGNED(16) static const float _ps_minus_cephes_DP1[4] = {-0.78515625, -0.78515625, -0.78515625, -0.78515625}; __VOLK_ATTR_ALIGNED(16) static const float _ps_minus_cephes_DP2[4] = {-2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4}; __VOLK_ATTR_ALIGNED(16) static const float _ps_minus_cephes_DP3[4] = {-3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8}; __VOLK_ATTR_ALIGNED(16) static const float _ps_coscof_p0[4] = {2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005}; __VOLK_ATTR_ALIGNED(16) static const float _ps_coscof_p1[4] = {-1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003}; __VOLK_ATTR_ALIGNED(16) static const float _ps_coscof_p2[4] = {4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002}; __VOLK_ATTR_ALIGNED(16) static const float _ps_sincof_p0[4] = {-1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4}; __VOLK_ATTR_ALIGNED(16) static const float _ps_sincof_p1[4] = {8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3}; __VOLK_ATTR_ALIGNED(16) static const float _ps_sincof_p2[4] = {-1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1}; __VOLK_ATTR_ALIGNED(16) static const float _ps_0p5[4] = {0.5f, 0.5f, 0.5f, 0.5f}; __VOLK_ATTR_ALIGNED(16) static const float _ps_1[4] = {1.0f, 1.0f, 1.0f, 1.0f}; for (; number < sse_iters; number++) { x = _mm_loadu_ps(aPtr); __VOLK_GNSSSDR_PREFETCH(aPtr + 8); sign_bit_sin = x; /* take the absolute value */ x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask); /* extract the sign bit (upper one) */ sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask); /* scale by 4/Pi */ y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI); /* store the integer part of y in emm2 */ emm2 = _mm_cvttps_epi32(y); /* j=(j+1) & (~1) (see the cephes sources) */ emm2 = _mm_add_epi32(emm2, *(__m128i*)_pi32_1); emm2 = _mm_and_si128(emm2, *(__m128i*)_pi32_inv1); y = _mm_cvtepi32_ps(emm2); emm4 = emm2; /* get the swap sign flag for the sine */ emm0 = _mm_and_si128(emm2, *(__m128i*)_pi32_4); emm0 = _mm_slli_epi32(emm0, 29); __m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0); /* get the polynom selection mask for the sine*/ emm2 = _mm_and_si128(emm2, *(__m128i*)_pi32_2); emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); __m128 poly_mask = _mm_castsi128_ps(emm2); /* The magic pass: "Extended precision modular arithmetic” x = ((x - y * DP1) - y * DP2) - y * DP3; */ xmm1 = *(__m128*)_ps_minus_cephes_DP1; xmm2 = *(__m128*)_ps_minus_cephes_DP2; xmm3 = *(__m128*)_ps_minus_cephes_DP3; xmm1 = _mm_mul_ps(y, xmm1); xmm2 = _mm_mul_ps(y, xmm2); xmm3 = _mm_mul_ps(y, xmm3); x = _mm_add_ps(x, xmm1); x = _mm_add_ps(x, xmm2); x = _mm_add_ps(x, xmm3); emm4 = _mm_sub_epi32(emm4, *(__m128i*)_pi32_2); emm4 = _mm_andnot_si128(emm4, *(__m128i*)_pi32_4); emm4 = _mm_slli_epi32(emm4, 29); __m128 sign_bit_cos = _mm_castsi128_ps(emm4); sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin); /* Evaluate the first polynom (0 <= x <= Pi/4) */ __m128 z = _mm_mul_ps(x, x); y = *(__m128*)_ps_coscof_p0; y = _mm_mul_ps(y, z); y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1); y = _mm_mul_ps(y, z); y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2); y = _mm_mul_ps(y, z); y = _mm_mul_ps(y, z); __m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5); y = _mm_sub_ps(y, tmp); y = _mm_add_ps(y, *(__m128*)_ps_1); /* Evaluate the second polynom (Pi/4 <= x <= 0) */ __m128 y2 = *(__m128*)_ps_sincof_p0; y2 = _mm_mul_ps(y2, z); y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1); y2 = _mm_mul_ps(y2, z); y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2); y2 = _mm_mul_ps(y2, z); y2 = _mm_mul_ps(y2, x); y2 = _mm_add_ps(y2, x); /* select the correct result from the two polynoms */ xmm3 = poly_mask; __m128 ysin2 = _mm_and_ps(xmm3, y2); __m128 ysin1 = _mm_andnot_ps(xmm3, y); y2 = _mm_sub_ps(y2, ysin2); y = _mm_sub_ps(y, ysin1); xmm1 = _mm_add_ps(ysin1, ysin2); xmm2 = _mm_add_ps(y, y2); /* update the sign */ sine = _mm_xor_ps(xmm1, sign_bit_sin); cosine = _mm_xor_ps(xmm2, sign_bit_cos); /* write the output */ aux = _mm_unpacklo_ps(cosine, sine); _mm_storeu_ps((float*)bPtr, aux); bPtr += 2; aux = _mm_unpackhi_ps(cosine, sine); _mm_storeu_ps((float*)bPtr, aux); bPtr += 2; aPtr += 4; } for (number = sse_iters * 4; number < num_points; number++) { _in = *aPtr++; *bPtr++ = lv_cmake((float)cosf(_in), (float)sinf(_in)); } } #endif /* LV_HAVE_SSE2 */ #ifdef LV_HAVE_GENERIC static inline void volk_gnsssdr_32f_sincos_32fc_generic(lv_32fc_t* out, const float* in, unsigned int num_points) { float _in; unsigned int i; for (i = 0; i < num_points; i++) { _in = *in++; *out++ = lv_cmake((float)cosf(_in), (float)sinf(_in)); } } #endif /* LV_HAVE_GENERIC */ #ifdef LV_HAVE_GENERIC #include #include static inline void volk_gnsssdr_32f_sincos_32fc_generic_fxpt(lv_32fc_t* out, const float* in, unsigned int num_points) { float _in, s, c; int32_t x, sin_index, cos_index, d; const float PI = 3.14159265358979323846; const float TWO_TO_THE_31_DIV_PI = 2147483648.0 / PI; const float TWO_PI = PI * 2; const int32_t bitlength = 32; const int32_t Nbits = 10; const int32_t diffbits = bitlength - Nbits; uint32_t ux; unsigned int i; for (i = 0; i < num_points; i++) { _in = *in++; d = (int32_t)floor(_in / TWO_PI + 0.5); _in -= d * TWO_PI; x = (int32_t)((float)_in * TWO_TO_THE_31_DIV_PI); ux = x; sin_index = ux >> diffbits; s = sine_table_10bits[sin_index][0] * (ux >> 1) + sine_table_10bits[sin_index][1]; ux = x + 0x40000000; cos_index = ux >> diffbits; c = sine_table_10bits[cos_index][0] * (ux >> 1) + sine_table_10bits[cos_index][1]; *out++ = lv_cmake((float)c, (float)s); } } #endif /* LV_HAVE_GENERIC */ #ifdef LV_HAVE_NEONV7 #include static inline void volk_gnsssdr_32f_sincos_32fc_neon(lv_32fc_t* out, const float* in, unsigned int num_points) { lv_32fc_t* bPtr = out; const float* aPtr = in; const unsigned int neon_iters = num_points / 4; const float32_t c_minus_cephes_DP1 = -0.78515625; const float32_t c_minus_cephes_DP2 = -2.4187564849853515625e-4; const float32_t c_minus_cephes_DP3 = -3.77489497744594108e-8; const float32_t c_sincof_p0 = -1.9515295891E-4; const float32_t c_sincof_p1 = 8.3321608736E-3; const float32_t c_sincof_p2 = -1.6666654611E-1; const float32_t c_coscof_p0 = 2.443315711809948E-005; const float32_t c_coscof_p1 = -1.388731625493765E-003; const float32_t c_coscof_p2 = 4.166664568298827E-002; const float32_t c_cephes_FOPI = 1.27323954473516; unsigned int number = 0; float _in; float32x4_t x, xmm1, xmm2, xmm3, y, y1, y2, ys, yc, z; float32x4x2_t result; uint32x4_t emm2, poly_mask, sign_mask_sin, sign_mask_cos; for (; number < neon_iters; number++) { x = vld1q_f32(aPtr); __VOLK_GNSSSDR_PREFETCH(aPtr + 8); sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0)); x = vabsq_f32(x); /* scale by 4/Pi */ y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI)); /* store the integer part of y in mm0 */ emm2 = vcvtq_u32_f32(y); /* j=(j+1) & (~1) (see the cephes sources) */ emm2 = vaddq_u32(emm2, vdupq_n_u32(1)); emm2 = vandq_u32(emm2, vdupq_n_u32(~1)); y = vcvtq_f32_u32(emm2); /* get the polynom selection mask there is one polynom for 0 <= x <= Pi/4 and another one for Pi/4