/*! * \file beidou_b3i_signal_processing.cc * \brief This class implements various functions for BeiDou B1I signal * \author Damian Miralles, 2019. dmiralles2009@gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "beidou_b3i_signal_processing.h" #include #include #include auto auxCeil = [](float x) { return static_cast(static_cast((x) + 1)); }; void beidou_b3i_code_gen_int(gsl::span _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 10230; std::bitset<_code_length> G1{}; std::bitset<_code_length> G2{}; auto G1_register = std::bitset<13>{}.set(); // All true auto G2_register = std::bitset<13>{}.set(); // All true auto G1_register_reset = std::bitset<13>{}.set(); G1_register_reset.reset(0); G1_register_reset.reset(1); // {false, false, true, true, true, true, true, true, true, true, true, true, true}; bool feedback1; bool feedback2; bool aux; uint32_t lcv; uint32_t lcv2; uint32_t delay; int32_t prn_idx = _prn - 1; const std::array, 63> G2_register_shifted = {std::bitset<13>(std::string("1010111111111")), std::bitset<13>(std::string("1111000101011")), std::bitset<13>(std::string("1011110001010")), std::bitset<13>(std::string("1111111111011")), std::bitset<13>(std::string("1100100011111")), std::bitset<13>(std::string("1001001100100")), std::bitset<13>(std::string("1111111010010")), std::bitset<13>(std::string("1110111111101")), std::bitset<13>(std::string("1010000000010")), std::bitset<13>(std::string("0010000011011")), std::bitset<13>(std::string("1110101110000")), std::bitset<13>(std::string("0010110011110")), std::bitset<13>(std::string("0110010010101")), std::bitset<13>(std::string("0111000100110")), std::bitset<13>(std::string("1000110001001")), std::bitset<13>(std::string("1110001111100")), std::bitset<13>(std::string("0010011000101")), std::bitset<13>(std::string("0000011101100")), std::bitset<13>(std::string("1000101010111")), std::bitset<13>(std::string("0001011011110")), std::bitset<13>(std::string("0010000101101")), std::bitset<13>(std::string("0010110001010")), std::bitset<13>(std::string("0001011001111")), std::bitset<13>(std::string("0011001100010")), std::bitset<13>(std::string("0011101001000")), std::bitset<13>(std::string("0100100101001")), std::bitset<13>(std::string("1011011010011")), std::bitset<13>(std::string("1010111100010")), std::bitset<13>(std::string("0001011110101")), std::bitset<13>(std::string("0111111111111")), std::bitset<13>(std::string("0110110001111")), std::bitset<13>(std::string("1010110001001")), std::bitset<13>(std::string("1001010101011")), std::bitset<13>(std::string("1100110100101")), std::bitset<13>(std::string("1101001011101")), std::bitset<13>(std::string("1111101110100")), std::bitset<13>(std::string("0010101100111")), std::bitset<13>(std::string("1110100010000")), std::bitset<13>(std::string("1101110010000")), std::bitset<13>(std::string("1101011001110")), std::bitset<13>(std::string("1000000110100")), std::bitset<13>(std::string("0101111011001")), std::bitset<13>(std::string("0110110111100")), std::bitset<13>(std::string("1101001110001")), std::bitset<13>(std::string("0011100100010")), std::bitset<13>(std::string("0101011000101")), std::bitset<13>(std::string("1001111100110")), std::bitset<13>(std::string("1111101001000")), std::bitset<13>(std::string("0000101001001")), std::bitset<13>(std::string("1000010101100")), std::bitset<13>(std::string("1111001001100")), std::bitset<13>(std::string("0100110001111")), std::bitset<13>(std::string("0000000011000")), std::bitset<13>(std::string("1000000000100")), std::bitset<13>(std::string("0011010100110")), std::bitset<13>(std::string("1011001000110")), std::bitset<13>(std::string("0111001111000")), std::bitset<13>(std::string("0010111001010")), std::bitset<13>(std::string("1100111110110")), std::bitset<13>(std::string("1001001000101")), std::bitset<13>(std::string("0111000100000")), std::bitset<13>(std::string("0011001000010")), std::bitset<13>(std::string("0010001001110"))}; // A simple error check if ((prn_idx < 0) || (prn_idx > 63)) { return; } // Assign shifted G2 register based on prn number G2_register = G2_register_shifted[prn_idx]; // Generate G1 and G2 Register for (lcv = 0; lcv < _code_length; lcv++) { G1[lcv] = G1_register[0]; G2[lcv] = G2_register[0]; feedback1 = G1_register[0] xor G1_register[9] xor G1_register[10] xor G1_register[12]; feedback2 = G2_register[0] xor G2_register[1] xor G2_register[3] xor G2_register[4] xor G2_register[6] xor G2_register[7] xor G2_register[8] xor G2_register[12]; for (lcv2 = 0; lcv2 < 12; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; G2_register[lcv2] = G2_register[lcv2 + 1]; } G1_register[12] = feedback1; G2_register[12] = feedback2; // Reset G1 register if sequence found if (G1_register == G1_register_reset) { G1_register = std::bitset<13>{}.set(); // All true } } delay = _code_length; delay += _chip_shift; delay %= _code_length; // Generate PRN from G1 and G2 Registers for (lcv = 0; lcv < _code_length; lcv++) { aux = G1[(lcv + _chip_shift) % _code_length] xor G2[delay]; if (aux == true) { _dest[lcv] = 1; } else { _dest[lcv] = -1; } delay++; delay %= _code_length; } } void beidou_b3i_code_gen_float(gsl::span _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 10230; std::array b3i_code_int{}; beidou_b3i_code_gen_int(b3i_code_int, _prn, _chip_shift); for (uint32_t ii = 0; ii < _code_length; ++ii) { _dest[ii] = static_cast(b3i_code_int[ii]); } } void beidou_b3i_code_gen_complex(gsl::span> _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 10230; std::array b3i_code_int{}; beidou_b3i_code_gen_int(b3i_code_int, _prn, _chip_shift); for (uint32_t ii = 0; ii < _code_length; ++ii) { _dest[ii] = std::complex(static_cast(b3i_code_int[ii]), 0.0F); } } void beidou_b3i_code_gen_complex_sampled(gsl::span> _dest, uint32_t _prn, int _fs, uint32_t _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book std::array, 10230> _code{}; int32_t _samplesPerCode; int32_t _codeValueIndex; float _ts; float _tc; float aux; const int32_t _codeFreqBasis = 10230000; // Hz const int32_t _codeLength = 10230; // --- Find number of samples per spreading code --------------------------- _samplesPerCode = static_cast(static_cast(_fs) / (static_cast(_codeFreqBasis) / static_cast(_codeLength))); // --- Find time constants ------------------------------------------------- _ts = 1.0 / static_cast(_fs); // Sampling period in sec _tc = 1.0 / static_cast(_codeFreqBasis); // C/A chip period in sec beidou_b3i_code_gen_complex(_code, _prn, _chip_shift); // generate C/A code 1 sample per chip for (int32_t i = 0; i < _samplesPerCode; i++) { // === Digitizing ================================================== // --- Make index array to read C/A code values -------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). aux = (_ts * (i + 1)) / _tc; _codeValueIndex = auxCeil(aux) - 1; // --- Make the digitized version of the C/A code ------------------ // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == _samplesPerCode - 1) { // --- Correct the last index (due to number rounding issues) ----------- _dest[i] = _code[_codeLength - 1]; } else { _dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample } } }