/*!
* \file pvt_solution.h
* \brief Interface of a base class for a PVT solution
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_PVT_SOLUTION_H_
#define GNSS_SDR_PVT_SOLUTION_H_
#include
#include
#include
#define PVT_MAX_CHANNELS 24
/*!
* \brief Base class for a PVT solution
*
*/
class Pvt_Solution
{
public:
Pvt_Solution();
double d_latitude_d; //!< RX position Latitude WGS84 [deg]
double d_longitude_d; //!< RX position Longitude WGS84 [deg]
double d_height_m; //!< RX position height WGS84 [m]
double d_rx_dt_m; //!< RX time offset [s]
boost::posix_time::ptime d_position_UTC_time;
bool b_valid_position;
int d_valid_observations; //!< Number of valid pseudorange observations (valid satellites)
int d_visible_satellites_IDs[PVT_MAX_CHANNELS] = {}; //!< Array with the IDs of the valid satellites
double d_visible_satellites_El[PVT_MAX_CHANNELS] = {}; //!< Array with the LOS Elevation of the valid satellites
double d_visible_satellites_Az[PVT_MAX_CHANNELS] = {}; //!< Array with the LOS Azimuth of the valid satellites
double d_visible_satellites_Distance[PVT_MAX_CHANNELS] = {}; //!< Array with the LOS Distance of the valid satellites
double d_visible_satellites_CN0_dB[PVT_MAX_CHANNELS] = {}; //!< Array with the IDs of the valid satellites
//averaging
int d_averaging_depth; //!< Length of averaging window
std::deque d_hist_latitude_d;
std::deque d_hist_longitude_d;
std::deque d_hist_height_m;
double d_avg_latitude_d; //!< Averaged latitude in degrees
double d_avg_longitude_d; //!< Averaged longitude in degrees
double d_avg_height_m; //!< Averaged height [m]
int pos_averaging(bool flag_averaging);
// DOP estimations
arma::mat d_Q;
double d_GDOP;
double d_PDOP;
double d_HDOP;
double d_VDOP;
double d_TDOP;
int compute_DOP(); //!< Compute Dilution Of Precision parameters
bool d_flag_averaging;
int set_averaging_depth(int depth);
arma::vec rotateSatellite(double traveltime, const arma::vec & X_sat);
/*!
* \brief Conversion of Cartesian coordinates (X,Y,Z) to geographical
* coordinates (d_latitude_d, d_longitude_d, d_height_m) on a selected reference ellipsoid.
*
* \param[in] X [m] Cartesian coordinate
* \param[in] Y [m] Cartesian coordinate
* \param[in] Z [m] Cartesian coordinate
* \param[in] elipsoid_selection. Choices of Reference Ellipsoid for Geographical Coordinates:
* 0 - International Ellipsoid 1924.
* 1 - International Ellipsoid 1967.
* 2 - World Geodetic System 1972.
* 3 - Geodetic Reference System 1980.
* 4 - World Geodetic System 1984.
*
*/
int cart2geo(double X, double Y, double Z, int elipsoid_selection);
/*!
* \brief Transformation of vector dx into topocentric coordinate system with origin at x
*
* \param[in] x Vector origin coordinates (in ECEF system [X; Y; Z;])
* \param[in] dx Vector ([dX; dY; dZ;]).
*
* \param[out] D Vector length. Units like the input
* \param[out] Az Azimuth from north positive clockwise, degrees
* \param[out] El Elevation angle, degrees
*
* Based on a Matlab function by Kai Borre
*/
int topocent(double *Az, double *El, double *D, const arma::vec & x, const arma::vec & dx);
/*!
* \brief Subroutine to calculate geodetic coordinates latitude, longitude,
* height given Cartesian coordinates X,Y,Z, and reference ellipsoid
* values semi-major axis (a) and the inverse of flattening (finv).
*
* The output units of angular quantities will be in decimal degrees
* (15.5 degrees not 15 deg 30 min). The output units of h will be the
* same as the units of X,Y,Z,a.
*
* \param[in] a - semi-major axis of the reference ellipsoid
* \param[in] finv - inverse of flattening of the reference ellipsoid
* \param[in] X,Y,Z - Cartesian coordinates
*
* \param[out] dphi - latitude
* \param[out] dlambda - longitude
* \param[out] h - height above reference ellipsoid
*
* Based in a Matlab function by Kai Borre
*/
int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z);
/*!
* \brief Tropospheric correction
*
* \param[in] sinel - sin of elevation angle of satellite
* \param[in] hsta_km - height of station in km
* \param[in] p_mb - atmospheric pressure in mb at height hp_km
* \param[in] t_kel - surface temperature in degrees Kelvin at height htkel_km
* \param[in] hum - humidity in % at height hhum_km
* \param[in] hp_km - height of pressure measurement in km
* \param[in] htkel_km - height of temperature measurement in km
* \param[in] hhum_km - height of humidity measurement in km
*
* \param[out] ddr_m - range correction (meters)
*
*
* Reference:
* Goad, C.C. & Goodman, L. (1974) A Modified Hopfield Tropospheric
* Refraction Correction Model. Paper presented at the
* American Geophysical Union Annual Fall Meeting, San
* Francisco, December 12-17
*
* Translated to C++ by Carles Fernandez from a Matlab implementation by Kai Borre
*/
int tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km);
};
#endif