/*! * \file pvt_solution.h * \brief Interface of a base class for a PVT solution * \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #ifndef GNSS_SDR_PVT_SOLUTION_H_ #define GNSS_SDR_PVT_SOLUTION_H_ #include #include #include #define PVT_MAX_CHANNELS 24 /*! * \brief Base class for a PVT solution * */ class Pvt_Solution { public: Pvt_Solution(); double d_latitude_d; //!< RX position Latitude WGS84 [deg] double d_longitude_d; //!< RX position Longitude WGS84 [deg] double d_height_m; //!< RX position height WGS84 [m] double d_rx_dt_m; //!< RX time offset [s] boost::posix_time::ptime d_position_UTC_time; bool b_valid_position; int d_valid_observations; //!< Number of valid pseudorange observations (valid satellites) int d_visible_satellites_IDs[PVT_MAX_CHANNELS] = {}; //!< Array with the IDs of the valid satellites double d_visible_satellites_El[PVT_MAX_CHANNELS] = {}; //!< Array with the LOS Elevation of the valid satellites double d_visible_satellites_Az[PVT_MAX_CHANNELS] = {}; //!< Array with the LOS Azimuth of the valid satellites double d_visible_satellites_Distance[PVT_MAX_CHANNELS] = {}; //!< Array with the LOS Distance of the valid satellites double d_visible_satellites_CN0_dB[PVT_MAX_CHANNELS] = {}; //!< Array with the IDs of the valid satellites //averaging int d_averaging_depth; //!< Length of averaging window std::deque d_hist_latitude_d; std::deque d_hist_longitude_d; std::deque d_hist_height_m; double d_avg_latitude_d; //!< Averaged latitude in degrees double d_avg_longitude_d; //!< Averaged longitude in degrees double d_avg_height_m; //!< Averaged height [m] int pos_averaging(bool flag_averaging); // DOP estimations arma::mat d_Q; double d_GDOP; double d_PDOP; double d_HDOP; double d_VDOP; double d_TDOP; int compute_DOP(); //!< Compute Dilution Of Precision parameters bool d_flag_averaging; int set_averaging_depth(int depth); arma::vec rotateSatellite(double traveltime, const arma::vec & X_sat); /*! * \brief Conversion of Cartesian coordinates (X,Y,Z) to geographical * coordinates (d_latitude_d, d_longitude_d, d_height_m) on a selected reference ellipsoid. * * \param[in] X [m] Cartesian coordinate * \param[in] Y [m] Cartesian coordinate * \param[in] Z [m] Cartesian coordinate * \param[in] elipsoid_selection. Choices of Reference Ellipsoid for Geographical Coordinates: * 0 - International Ellipsoid 1924. * 1 - International Ellipsoid 1967. * 2 - World Geodetic System 1972. * 3 - Geodetic Reference System 1980. * 4 - World Geodetic System 1984. * */ int cart2geo(double X, double Y, double Z, int elipsoid_selection); /*! * \brief Transformation of vector dx into topocentric coordinate system with origin at x * * \param[in] x Vector origin coordinates (in ECEF system [X; Y; Z;]) * \param[in] dx Vector ([dX; dY; dZ;]). * * \param[out] D Vector length. Units like the input * \param[out] Az Azimuth from north positive clockwise, degrees * \param[out] El Elevation angle, degrees * * Based on a Matlab function by Kai Borre */ int topocent(double *Az, double *El, double *D, const arma::vec & x, const arma::vec & dx); /*! * \brief Subroutine to calculate geodetic coordinates latitude, longitude, * height given Cartesian coordinates X,Y,Z, and reference ellipsoid * values semi-major axis (a) and the inverse of flattening (finv). * * The output units of angular quantities will be in decimal degrees * (15.5 degrees not 15 deg 30 min). The output units of h will be the * same as the units of X,Y,Z,a. * * \param[in] a - semi-major axis of the reference ellipsoid * \param[in] finv - inverse of flattening of the reference ellipsoid * \param[in] X,Y,Z - Cartesian coordinates * * \param[out] dphi - latitude * \param[out] dlambda - longitude * \param[out] h - height above reference ellipsoid * * Based in a Matlab function by Kai Borre */ int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z); /*! * \brief Tropospheric correction * * \param[in] sinel - sin of elevation angle of satellite * \param[in] hsta_km - height of station in km * \param[in] p_mb - atmospheric pressure in mb at height hp_km * \param[in] t_kel - surface temperature in degrees Kelvin at height htkel_km * \param[in] hum - humidity in % at height hhum_km * \param[in] hp_km - height of pressure measurement in km * \param[in] htkel_km - height of temperature measurement in km * \param[in] hhum_km - height of humidity measurement in km * * \param[out] ddr_m - range correction (meters) * * * Reference: * Goad, C.C. & Goodman, L. (1974) A Modified Hopfield Tropospheric * Refraction Correction Model. Paper presented at the * American Geophysical Union Annual Fall Meeting, San * Francisco, December 12-17 * * Translated to C++ by Carles Fernandez from a Matlab implementation by Kai Borre */ int tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km); }; #endif