/*! * \file dll_pll_veml_tracking_fpga.cc * \brief Implementation of a code DLL + carrier PLL tracking block using an FPGA * \author Marc Majoral, 2019. marc.majoral(at)cttc.es * \author Javier Arribas, 2019. jarribas(at)cttc.es * * Code DLL + carrier PLL according to the algorithms described in: * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkhauser, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "dll_pll_veml_tracking_fpga.h" #include "GPS_L1_CA.h" #include "GPS_L2C.h" #include "GPS_L5.h" #include "Galileo_E1.h" #include "Galileo_E5a.h" #include "MATH_CONSTANTS.h" #include "fpga_multicorrelator.h" #include "gnss_satellite.h" #include "gnss_sdr_create_directory.h" #include "gnss_synchro.h" #include "lock_detectors.h" #include "tracking_discriminators.h" #include #include #include #include // for mp #include #include #include #include #include // for abs, size_t #include #include #include #if HAS_STD_FILESYSTEM #include namespace fs = std::filesystem; #else #include namespace fs = boost::filesystem; #endif dll_pll_veml_tracking_fpga_sptr dll_pll_veml_make_tracking_fpga(const Dll_Pll_Conf_Fpga &conf_) { return dll_pll_veml_tracking_fpga_sptr(new dll_pll_veml_tracking_fpga(conf_)); } dll_pll_veml_tracking_fpga::dll_pll_veml_tracking_fpga(const Dll_Pll_Conf_Fpga &conf_) : gr::block("dll_pll_veml_tracking_fpga", gr::io_signature::make(0, 0, sizeof(lv_16sc_t)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { trk_parameters = conf_; // Telemetry bit synchronization message port input this->message_port_register_out(pmt::mp("events")); this->set_relative_rate(1.0 / static_cast(trk_parameters.vector_length)); // Telemetry bit synchronization message port input (mainly for GPS L1 CA) this->message_port_register_in(pmt::mp("preamble_samplestamp")); // Telemetry message port input this->message_port_register_in(pmt::mp("telemetry_to_trk")); this->set_msg_handler(pmt::mp("telemetry_to_trk"), boost::bind(&dll_pll_veml_tracking_fpga::msg_handler_telemetry_to_trk, this, _1)); // initialize internal vars d_veml = false; d_cloop = true; d_pull_in_transitory = true; d_code_chip_rate = 0.0; d_secondary_code_length = 0U; d_secondary_code_string = nullptr; d_preambles_symbols = nullptr; d_preamble_length_symbols = 0; signal_type = std::string(trk_parameters.signal); std::map map_signal_pretty_name; map_signal_pretty_name["1C"] = "L1 C/A"; map_signal_pretty_name["1B"] = "E1"; map_signal_pretty_name["1G"] = "L1 C/A"; map_signal_pretty_name["2S"] = "L2C"; map_signal_pretty_name["2G"] = "L2 C/A"; map_signal_pretty_name["5X"] = "E5a"; map_signal_pretty_name["L5"] = "L5"; signal_pretty_name = map_signal_pretty_name[signal_type]; d_code_samples_per_chip = trk_parameters.code_samples_per_chip; // number of samples per chip d_code_length_chips = trk_parameters.code_length_chips; if (trk_parameters.system == 'G') { systemName = "GPS"; if (signal_type == "1C") { d_signal_carrier_freq = GPS_L1_FREQ_HZ; d_code_period = GPS_L1_CA_CODE_PERIOD; d_code_chip_rate = GPS_L1_CA_CODE_RATE_HZ; d_symbols_per_bit = GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; d_correlation_length_ms = 1; // GPS L1 C/A does not have pilot component nor secondary code d_secondary = false; trk_parameters.track_pilot = false; interchange_iq = false; // set the preamble uint16_t preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE; // preamble bits to sampled symbols d_preamble_length_symbols = GPS_CA_PREAMBLE_LENGTH_SYMBOLS; d_preambles_symbols = static_cast(volk_gnsssdr_malloc(GPS_CA_PREAMBLE_LENGTH_SYMBOLS * sizeof(int32_t), volk_gnsssdr_get_alignment())); int32_t n = 0; for (uint16_t preambles_bit : preambles_bits) { for (uint32_t j = 0; j < GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; j++) { if (preambles_bit == 1) { d_preambles_symbols[n] = 1; } else { d_preambles_symbols[n] = -1; } n++; } } d_symbol_history.set_capacity(GPS_CA_PREAMBLE_LENGTH_SYMBOLS); // Change fixed buffer size d_symbol_history.clear(); // Clear all the elements in the buffer } else if (signal_type == "2S") { d_signal_carrier_freq = GPS_L2_FREQ_HZ; d_code_period = GPS_L2_M_PERIOD; d_code_chip_rate = GPS_L2_M_CODE_RATE_HZ; d_symbols_per_bit = GPS_L2_SAMPLES_PER_SYMBOL; d_correlation_length_ms = 20; // GPS L2 does not have pilot component nor secondary code d_secondary = false; trk_parameters.track_pilot = false; interchange_iq = false; } else if (signal_type == "L5") { d_signal_carrier_freq = GPS_L5_FREQ_HZ; d_code_period = GPS_L5I_PERIOD; d_code_chip_rate = GPS_L5I_CODE_RATE_HZ; d_symbols_per_bit = GPS_L5_SAMPLES_PER_SYMBOL; d_correlation_length_ms = 1; d_secondary = true; if (trk_parameters.track_pilot) { d_secondary_code_length = static_cast(GPS_L5Q_NH_CODE_LENGTH); d_secondary_code_string = const_cast(&GPS_L5Q_NH_CODE_STR); signal_pretty_name = signal_pretty_name + "Q"; interchange_iq = true; } else { d_secondary_code_length = static_cast(GPS_L5I_NH_CODE_LENGTH); d_secondary_code_string = const_cast(&GPS_L5I_NH_CODE_STR); signal_pretty_name = signal_pretty_name + "I"; interchange_iq = false; } } else { LOG(WARNING) << "Invalid Signal argument when instantiating tracking blocks"; std::cerr << "Invalid Signal argument when instantiating tracking blocks" << std::endl; d_correlation_length_ms = 1; d_secondary = false; interchange_iq = false; d_signal_carrier_freq = 0.0; d_code_period = 0.0; d_symbols_per_bit = 0; } } else if (trk_parameters.system == 'E') { systemName = "Galileo"; if (signal_type == "1B") { d_signal_carrier_freq = GALILEO_E1_FREQ_HZ; d_code_period = GALILEO_E1_CODE_PERIOD; d_code_chip_rate = GALILEO_E1_CODE_CHIP_RATE_HZ; d_symbols_per_bit = 1; d_correlation_length_ms = 4; d_veml = true; if (trk_parameters.track_pilot) { d_secondary = true; d_secondary_code_length = static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); d_secondary_code_string = const_cast(&GALILEO_E1_C_SECONDARY_CODE); signal_pretty_name = signal_pretty_name + "C"; } else { d_secondary = false; signal_pretty_name = signal_pretty_name + "B"; } interchange_iq = false; // Note that E1-B and E1-C are in anti-phase, NOT IN QUADRATURE. See Galileo ICD. } else if (signal_type == "5X") { d_signal_carrier_freq = GALILEO_E5A_FREQ_HZ; d_code_period = GALILEO_E5A_CODE_PERIOD; d_code_chip_rate = GALILEO_E5A_CODE_CHIP_RATE_HZ; d_symbols_per_bit = 20; d_correlation_length_ms = 1; if (trk_parameters.track_pilot) { d_secondary = true; d_secondary_code_length = static_cast(GALILEO_E5A_Q_SECONDARY_CODE_LENGTH); signal_pretty_name = signal_pretty_name + "Q"; interchange_iq = true; } else { //Do not acquire secondary code in data component. It is done in telemetry decoder d_secondary = false; signal_pretty_name = signal_pretty_name + "I"; interchange_iq = false; } } else { LOG(WARNING) << "Invalid Signal argument when instantiating tracking blocks"; std::cout << "Invalid Signal argument when instantiating tracking blocks" << std::endl; d_correlation_length_ms = 1; d_secondary = false; interchange_iq = false; d_signal_carrier_freq = 0.0; d_code_period = 0.0; d_symbols_per_bit = 0; } } else { LOG(WARNING) << "Invalid System argument when instantiating tracking blocks"; std::cerr << "Invalid System argument when instantiating tracking blocks" << std::endl; d_correlation_length_ms = 1; d_secondary = false; interchange_iq = false; d_signal_carrier_freq = 0.0; d_code_period = 0.0; d_symbols_per_bit = 0; } T_chip_seconds = 0.0; T_prn_seconds = 0.0; T_prn_samples = 0.0; K_blk_samples = 0.0; // Initialize tracking ========================================== d_code_loop_filter = Tracking_loop_filter(d_code_period, trk_parameters.dll_bw_hz, trk_parameters.dll_filter_order, false); //printf("trk_parameters.fll_bw_hz = %f trk_parameters.pll_bw_hz = %f trk_parameters.pll_filter_order = %d\n", trk_parameters.fll_bw_hz, trk_parameters.pll_bw_hz, trk_parameters.pll_filter_order); d_carrier_loop_filter.set_params(trk_parameters.fll_bw_hz, trk_parameters.pll_bw_hz, trk_parameters.pll_filter_order); if (d_veml) { // Very-Early, Early, Prompt, Late, Very-Late d_n_correlator_taps = 5; } else { // Early, Prompt, Late d_n_correlator_taps = 3; } d_correlator_outs = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_local_code_shift_chips = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); // map memory pointers of correlator outputs if (d_veml) { d_Very_Early = &d_correlator_outs[0]; d_Early = &d_correlator_outs[1]; d_Prompt = &d_correlator_outs[2]; d_Late = &d_correlator_outs[3]; d_Very_Late = &d_correlator_outs[4]; d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[2] = 0.0; d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); d_prompt_data_shift = &d_local_code_shift_chips[2]; } else { d_Very_Early = nullptr; d_Early = &d_correlator_outs[0]; d_Prompt = &d_correlator_outs[1]; d_Late = &d_correlator_outs[2]; d_Very_Late = nullptr; d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_prompt_data_shift = &d_local_code_shift_chips[1]; } if (trk_parameters.extend_correlation_symbols > 1) { d_enable_extended_integration = true; } else { d_enable_extended_integration = false; trk_parameters.extend_correlation_symbols = 1; } // --- Initializations --- d_Prompt_circular_buffer.set_capacity(d_secondary_code_length); // Initial code frequency basis of NCO d_code_freq_chips = d_code_chip_rate; // Residual code phase (in chips) d_rem_code_phase_samples = 0.0; // Residual carrier phase d_rem_carr_phase_rad = 0.0; // sample synchronization d_sample_counter = 0ULL; d_acq_sample_stamp = 0ULL; d_absolute_samples_offset = 0ULL; d_current_prn_length_samples = static_cast(trk_parameters.vector_length); d_next_prn_length_samples = d_current_prn_length_samples; d_current_correlation_time_s = 0.0; d_correlation_length_samples = static_cast(trk_parameters.vector_length); // this one is only for initialisation and does not change its value (MM) // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = new gr_complex[trk_parameters.cn0_samples]; d_carrier_lock_test = 1.0; d_CN0_SNV_dB_Hz = 0.0; d_cn0_smoother = Exponential_Smoother(); if (d_code_period > 0.0) { d_cn0_smoother.set_samples_for_initialization(200 / static_cast(d_code_period * 1000.0)); } d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = trk_parameters.carrier_lock_th; d_Prompt_Data = static_cast(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_acquisition_gnss_synchro = nullptr; d_channel = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_acc_carrier_phase_rad = 0.0; d_extend_correlation_symbols_count = 0; d_code_phase_step_chips = 0.0; d_code_phase_rate_step_chips = 0.0; d_carrier_phase_step_rad = 0.0; d_carrier_phase_rate_step_rad = 0.0; d_rem_code_phase_chips = 0.0; d_state = 0; // initial state: standby clear_tracking_vars(); if (trk_parameters.smoother_length > 0) { d_carr_ph_history.set_capacity(trk_parameters.smoother_length * 2); d_code_ph_history.set_capacity(trk_parameters.smoother_length * 2); } else { d_carr_ph_history.set_capacity(1); d_code_ph_history.set_capacity(1); } d_dump = trk_parameters.dump; d_dump_mat = trk_parameters.dump_mat and d_dump; if (d_dump) { d_dump_filename = trk_parameters.dump_filename; std::string dump_path; // Get path if (d_dump_filename.find_last_of('/') != std::string::npos) { std::string dump_filename_ = d_dump_filename.substr(d_dump_filename.find_last_of('/') + 1); dump_path = d_dump_filename.substr(0, d_dump_filename.find_last_of('/')); d_dump_filename = dump_filename_; } else { dump_path = std::string("."); } if (d_dump_filename.empty()) { d_dump_filename = "trk_channel_"; } // remove extension if any if (d_dump_filename.substr(1).find_last_of('.') != std::string::npos) { d_dump_filename = d_dump_filename.substr(0, d_dump_filename.find_last_of('.')); } d_dump_filename = dump_path + fs::path::preferred_separator + d_dump_filename; // create directory if (!gnss_sdr_create_directory(dump_path)) { std::cerr << "GNSS-SDR cannot create dump files for the tracking block. Wrong permissions?" << std::endl; d_dump = false; } } // create multicorrelator class std::string device_name = trk_parameters.device_name; uint32_t device_base = trk_parameters.device_base; int32_t *ca_codes = trk_parameters.ca_codes; int32_t *data_codes = trk_parameters.data_codes; uint32_t multicorr_type = trk_parameters.multicorr_type; multicorrelator_fpga = std::make_shared(d_n_correlator_taps, device_name, device_base, ca_codes, data_codes, d_code_length_chips, trk_parameters.track_pilot, multicorr_type, d_code_samples_per_chip); multicorrelator_fpga->set_output_vectors(d_correlator_outs, d_Prompt_Data); d_sample_counter_next = 0ULL; } void dll_pll_veml_tracking_fpga::msg_handler_telemetry_to_trk(const pmt::pmt_t &msg) { try { if (pmt::any_ref(msg).type() == typeid(int)) { int tlm_event; tlm_event = boost::any_cast(pmt::any_ref(msg)); switch (tlm_event) { case 1: //tlm fault in current channel { DLOG(INFO) << "Telemetry fault received in ch " << this->d_channel; gr::thread::scoped_lock lock(d_setlock); d_carrier_lock_fail_counter = 10000; //force loss-of-lock condition break; } default: { break; } } } } catch (boost::bad_any_cast &e) { LOG(WARNING) << "msg_handler_telemetry_to_trk Bad any cast!"; } } void dll_pll_veml_tracking_fpga::start_tracking() { // all the calculations that do not require the data from the acquisition module are moved to the // set_gnss_synchro command, which is received with a valid PRN before the acquisition module starts the // acquisition process. This is done to minimize the time between the end of the acquisition process and // the beginning of the tracking process. // correct the code phase according to the delay between acq and trk d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in; // filter initialization d_carrier_loop_filter.initialize(static_cast(d_acq_carrier_doppler_hz)); // initialize the carrier filter // enable tracking pull-in d_state = 1; } dll_pll_veml_tracking_fpga::~dll_pll_veml_tracking_fpga() { if (signal_type == "1C") { volk_gnsssdr_free(d_preambles_symbols); } if (d_dump_file.is_open()) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } if (d_dump_mat) { try { save_matfile(); } catch (const std::exception &ex) { LOG(WARNING) << "Error saving the .mat file: " << ex.what(); } } try { volk_gnsssdr_free(d_local_code_shift_chips); volk_gnsssdr_free(d_correlator_outs); volk_gnsssdr_free(d_Prompt_Data); delete[] d_Prompt_buffer; multicorrelator_fpga->free(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } bool dll_pll_veml_tracking_fpga::acquire_secondary() { // ******* preamble correlation ******** int32_t corr_value = 0; for (uint32_t i = 0; i < d_secondary_code_length; i++) { if (d_Prompt_circular_buffer[i].real() < 0.0) // symbols clipping //if (d_Prompt_buffer_deque.at(i).real() < 0.0) // symbols clipping { if (d_secondary_code_string->at(i) == '0') { corr_value++; } else { corr_value--; } } else { if (d_secondary_code_string->at(i) == '0') { corr_value--; } else { corr_value++; } } } if (abs(corr_value) == static_cast(d_secondary_code_length)) { return true; } return false; } bool dll_pll_veml_tracking_fpga::cn0_and_tracking_lock_status(double coh_integration_time_s) { // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < trk_parameters.cn0_samples) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = d_P_accu; d_cn0_estimation_counter++; return true; } else { d_cn0_estimation_counter = 0; // Code lock indicator float d_CN0_SNV_dB_Hz_raw = cn0_svn_estimator(d_Prompt_buffer, trk_parameters.cn0_samples, static_cast(coh_integration_time_s)); d_CN0_SNV_dB_Hz = d_cn0_smoother.smooth(d_CN0_SNV_dB_Hz_raw); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, trk_parameters.cn0_samples); // Loss of lock detection if (!d_pull_in_transitory) { if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < trk_parameters.cn0_min) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) { d_carrier_lock_fail_counter--; } } } if (d_carrier_lock_fail_counter > trk_parameters.max_lock_fail) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock d_carrier_lock_fail_counter = 0; multicorrelator_fpga->unlock_channel(); return false; } else { return true; } } } // correlation requires: // - updated remnant carrier phase in radians (rem_carr_phase_rad) // - updated remnant code phase in samples (d_rem_code_phase_samples) // - d_code_freq_chips // - d_carrier_doppler_hz void dll_pll_veml_tracking_fpga::do_correlation_step(void) { // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // perform carrier wipe-off and compute Early, Prompt and Late correlation multicorrelator_fpga->Carrier_wipeoff_multicorrelator_resampler( d_rem_carr_phase_rad, d_carrier_phase_step_rad, d_carrier_phase_rate_step_rad, static_cast(d_rem_code_phase_chips) * static_cast(d_code_samples_per_chip), static_cast(d_code_phase_step_chips) * static_cast(d_code_samples_per_chip), static_cast(d_code_phase_rate_step_chips) * static_cast(d_code_samples_per_chip), d_current_prn_length_samples); } void dll_pll_veml_tracking_fpga::run_dll_pll() { // ################## PLL ########################################################## // PLL discriminator //printf("d_cloop = %d\n", d_cloop); if (d_cloop) { // Costas loop discriminator, insensitive to 180 deg phase transitions d_carr_phase_error_hz = pll_cloop_two_quadrant_atan(d_P_accu) / PI_2; } else { // Secondary code acquired. No symbols transition should be present in the signal d_carr_phase_error_hz = pll_four_quadrant_atan(d_P_accu) / PI_2; } if ((d_pull_in_transitory == true and trk_parameters.enable_fll_pull_in == true) or trk_parameters.enable_fll_steady_state) { // FLL discriminator d_carr_freq_error_hz = fll_four_quadrant_atan(d_P_accu_old, d_P_accu, 0, d_current_correlation_time_s) / GPS_TWO_PI; d_P_accu_old = d_P_accu; // Carrier discriminator filter if ((d_pull_in_transitory == true and trk_parameters.enable_fll_pull_in == true)) { //pure FLL, disable PLL d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_error(d_carr_freq_error_hz, 0, d_current_correlation_time_s); } else { //FLL-aided PLL d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_error(d_carr_freq_error_hz, d_carr_phase_error_hz, d_current_correlation_time_s); } } else { // Carrier discriminator filter d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_error(0, d_carr_phase_error_hz, d_current_correlation_time_s); } // New carrier Doppler frequency estimation d_carrier_doppler_hz = d_carr_error_filt_hz; // std::cout << "d_carrier_doppler_hz: " << d_carrier_doppler_hz << std::endl; // std::cout << "d_CN0_SNV_dB_Hz: " << this->d_CN0_SNV_dB_Hz << std::endl; // ################## DLL ########################################################## // DLL discriminator if (d_veml) { d_code_error_chips = dll_nc_vemlp_normalized(d_VE_accu, d_E_accu, d_L_accu, d_VL_accu); // [chips/Ti] } else { d_code_error_chips = dll_nc_e_minus_l_normalized(d_E_accu, d_L_accu); // [chips/Ti] } // Code discriminator filter d_code_error_filt_chips = d_code_loop_filter.apply(d_code_error_chips); // [chips/second] // New code Doppler frequency estimation d_code_freq_chips = (1.0 + (d_carrier_doppler_hz / d_signal_carrier_freq)) * d_code_chip_rate - d_code_error_filt_chips; } void dll_pll_veml_tracking_fpga::clear_tracking_vars() { std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0)); if (trk_parameters.track_pilot) { d_Prompt_Data[0] = gr_complex(0.0, 0.0); } d_P_accu_old = gr_complex(0.0, 0.0); d_carr_phase_error_hz = 0.0; d_carr_freq_error_hz = 0.0; d_carr_error_filt_hz = 0.0; d_code_error_chips = 0.0; d_code_error_filt_chips = 0.0; d_current_symbol = 0; d_Prompt_circular_buffer.clear(); //d_Prompt_buffer_deque.clear(); d_carrier_phase_rate_step_rad = 0.0; d_code_phase_rate_step_chips = 0.0; d_carr_ph_history.clear(); d_code_ph_history.clear(); } void dll_pll_veml_tracking_fpga::update_tracking_vars() { T_chip_seconds = 1.0 / d_code_freq_chips; T_prn_seconds = T_chip_seconds * static_cast(d_code_length_chips); // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### // keep alignment parameters for the next input buffer // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation T_prn_samples = T_prn_seconds * trk_parameters.fs_in; K_blk_samples = T_prn_samples + d_rem_code_phase_samples; //d_next_prn_length_samples = static_cast(std::floor(K_blk_samples)); // round to a discrete number of samples d_next_prn_length_samples = static_cast(std::floor(K_blk_samples)); // round to a discrete number of samples //int32_t actual_prn_length_samples = static_cast(std::floor(K_blk_samples)); //d_next_prn_length_samples = actual_prn_length_samples + (actual_prn_length_samples - d_current_prn_length_samples); //################### PLL COMMANDS ################################################# // carrier phase step (NCO phase increment per sample) [rads/sample] d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in; // carrier phase rate step (NCO phase increment rate per sample) [rads/sample^2] if (trk_parameters.high_dyn) { d_carr_ph_history.push_back(std::pair(d_carrier_phase_step_rad, static_cast(d_current_prn_length_samples))); if (d_carr_ph_history.full()) { double tmp_cp1 = 0.0; double tmp_cp2 = 0.0; double tmp_samples = 0.0; for (unsigned int k = 0; k < trk_parameters.smoother_length; k++) { tmp_cp1 += d_carr_ph_history[k].first; tmp_cp2 += d_carr_ph_history[trk_parameters.smoother_length * 2 - k - 1].first; tmp_samples += d_carr_ph_history[trk_parameters.smoother_length * 2 - k - 1].second; } tmp_cp1 /= static_cast(trk_parameters.smoother_length); tmp_cp2 /= static_cast(trk_parameters.smoother_length); d_carrier_phase_rate_step_rad = (tmp_cp2 - tmp_cp1) / tmp_samples; } } //std::cout << d_carrier_phase_rate_step_rad * trk_parameters.fs_in * trk_parameters.fs_in / PI_2 << std::endl; // remnant carrier phase to prevent overflow in the code NCO d_rem_carr_phase_rad += static_cast(d_carrier_phase_step_rad * static_cast(d_current_prn_length_samples) + 0.5 * d_carrier_phase_rate_step_rad * static_cast(d_current_prn_length_samples) * static_cast(d_current_prn_length_samples)); d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, PI_2); // carrier phase accumulator //double a = d_carrier_phase_step_rad * static_cast(d_current_prn_length_samples); //double b = 0.5 * d_carrier_phase_rate_step_rad * static_cast(d_current_prn_length_samples) * static_cast(d_current_prn_length_samples); //std::cout << fmod(b, PI_2) / fmod(a, PI_2) << std::endl; d_acc_carrier_phase_rad -= (d_carrier_phase_step_rad * static_cast(d_current_prn_length_samples) + 0.5 * d_carrier_phase_rate_step_rad * static_cast(d_current_prn_length_samples) * static_cast(d_current_prn_length_samples)); //################### DLL COMMANDS ################################################# // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in; if (trk_parameters.high_dyn) { d_code_ph_history.push_back(std::pair(d_code_phase_step_chips, static_cast(d_current_prn_length_samples))); if (d_code_ph_history.full()) { double tmp_cp1 = 0.0; double tmp_cp2 = 0.0; double tmp_samples = 0.0; for (unsigned int k = 0; k < trk_parameters.smoother_length; k++) { tmp_cp1 += d_code_ph_history[k].first; tmp_cp2 += d_code_ph_history[trk_parameters.smoother_length * 2 - k - 1].first; tmp_samples += d_code_ph_history[trk_parameters.smoother_length * 2 - k - 1].second; } tmp_cp1 /= static_cast(trk_parameters.smoother_length); tmp_cp2 /= static_cast(trk_parameters.smoother_length); d_code_phase_rate_step_chips = (tmp_cp2 - tmp_cp1) / tmp_samples; } } // remnant code phase [chips] d_rem_code_phase_samples = K_blk_samples - static_cast(d_current_prn_length_samples); // rounding error < 1 sample d_rem_code_phase_chips = d_code_freq_chips * d_rem_code_phase_samples / trk_parameters.fs_in; } void dll_pll_veml_tracking_fpga::save_correlation_results() { if (d_secondary) { if (d_secondary_code_string->at(d_current_symbol) == '0') { if (d_veml) { d_VE_accu += *d_Very_Early; d_VL_accu += *d_Very_Late; } d_E_accu += *d_Early; d_P_accu += *d_Prompt; d_L_accu += *d_Late; } else { if (d_veml) { d_VE_accu -= *d_Very_Early; d_VL_accu -= *d_Very_Late; } d_E_accu -= *d_Early; d_P_accu -= *d_Prompt; d_L_accu -= *d_Late; } d_current_symbol++; // secondary code roll-up d_current_symbol %= d_secondary_code_length; } else { if (d_veml) { d_VE_accu += *d_Very_Early; d_VL_accu += *d_Very_Late; } d_E_accu += *d_Early; d_P_accu += *d_Prompt; d_L_accu += *d_Late; d_current_symbol++; d_current_symbol %= d_symbols_per_bit; } // If tracking pilot, disable Costas loop if (trk_parameters.track_pilot) { d_cloop = false; } else { d_cloop = true; } } void dll_pll_veml_tracking_fpga::log_data(bool integrating) { if (d_dump) { // Dump results to file float prompt_I; float prompt_Q; float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL; float tmp_float; double tmp_double; uint64_t tmp_long_int; if (trk_parameters.track_pilot) { if (interchange_iq) { prompt_I = d_Prompt_Data->imag(); prompt_Q = d_Prompt_Data->real(); } else { prompt_I = d_Prompt_Data->real(); prompt_Q = d_Prompt_Data->imag(); } } else { if (interchange_iq) { prompt_I = d_Prompt->imag(); prompt_Q = d_Prompt->real(); } else { prompt_I = d_Prompt->real(); prompt_Q = d_Prompt->imag(); } } if (d_veml) { tmp_VE = std::abs(d_VE_accu); tmp_VL = std::abs(d_VL_accu); } else { tmp_VE = 0.0; tmp_VL = 0.0; } tmp_E = std::abs(d_E_accu); tmp_P = std::abs(d_P_accu); tmp_L = std::abs(d_L_accu); if (integrating) { //TODO: Improve this solution! // It compensates the amplitude difference while integrating if (d_extend_correlation_symbols_count > 0) { float scale_factor = static_cast(trk_parameters.extend_correlation_symbols) / static_cast(d_extend_correlation_symbols_count); tmp_VE *= scale_factor; tmp_E *= scale_factor; tmp_P *= scale_factor; tmp_L *= scale_factor; tmp_VL *= scale_factor; } } try { // Dump correlators output d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); // PRN start sample stamp tmp_long_int = d_sample_counter + static_cast(d_current_prn_length_samples); d_dump_file.write(reinterpret_cast(&tmp_long_int), sizeof(uint64_t)); // accumulated carrier phase tmp_float = d_acc_carrier_phase_rad; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier and code frequency tmp_float = d_carrier_doppler_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier phase rate [Hz/s] tmp_float = d_carrier_phase_rate_step_rad * trk_parameters.fs_in * trk_parameters.fs_in / PI_2; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_freq_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // code phase rate [chips/s^2] tmp_float = d_code_phase_rate_step_chips * trk_parameters.fs_in * trk_parameters.fs_in; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // PLL commands tmp_float = d_carr_phase_error_hz; //tmp_float = d_carr_error_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_carr_error_filt_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // DLL commands tmp_float = d_code_error_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_error_filt_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // CN0 and carrier lock test tmp_float = d_CN0_SNV_dB_Hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_carrier_lock_test; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // AUX vars (for debug purposes) tmp_float = d_rem_code_phase_samples; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_double = static_cast(d_sample_counter + d_current_prn_length_samples); d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); // PRN uint32_t prn_ = d_acquisition_gnss_synchro->PRN; d_dump_file.write(reinterpret_cast(&prn_), sizeof(uint32_t)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } } int32_t dll_pll_veml_tracking_fpga::save_matfile() { // READ DUMP FILE std::ifstream::pos_type size; int32_t number_of_double_vars = 1; int32_t number_of_float_vars = 19; int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars + sizeof(float) * number_of_float_vars + sizeof(uint32_t); std::ifstream dump_file; std::string dump_filename_ = d_dump_filename; // add channel number to the filename dump_filename_.append(std::to_string(d_channel)); // add extension dump_filename_.append(".dat"); std::cout << "Generating .mat file for " << dump_filename_ << std::endl; dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); try { dump_file.open(dump_filename_.c_str(), std::ios::binary | std::ios::ate); } catch (const std::ifstream::failure &e) { std::cerr << "Problem opening dump file:" << e.what() << std::endl; return 1; } // count number of epochs and rewind int64_t num_epoch = 0; if (dump_file.is_open()) { size = dump_file.tellg(); num_epoch = static_cast(size) / static_cast(epoch_size_bytes); dump_file.seekg(0, std::ios::beg); } else { return 1; } auto *abs_VE = new float[num_epoch]; auto *abs_E = new float[num_epoch]; auto *abs_P = new float[num_epoch]; auto *abs_L = new float[num_epoch]; auto *abs_VL = new float[num_epoch]; auto *Prompt_I = new float[num_epoch]; auto *Prompt_Q = new float[num_epoch]; auto *PRN_start_sample_count = new uint64_t[num_epoch]; auto *acc_carrier_phase_rad = new float[num_epoch]; auto *carrier_doppler_hz = new float[num_epoch]; auto *carrier_doppler_rate_hz = new float[num_epoch]; auto *code_freq_chips = new float[num_epoch]; auto *code_freq_rate_chips = new float[num_epoch]; auto *carr_error_hz = new float[num_epoch]; auto *carr_error_filt_hz = new float[num_epoch]; auto *code_error_chips = new float[num_epoch]; auto *code_error_filt_chips = new float[num_epoch]; auto *CN0_SNV_dB_Hz = new float[num_epoch]; auto *carrier_lock_test = new float[num_epoch]; auto *aux1 = new float[num_epoch]; auto *aux2 = new double[num_epoch]; auto *PRN = new uint32_t[num_epoch]; try { if (dump_file.is_open()) { for (int64_t i = 0; i < num_epoch; i++) { dump_file.read(reinterpret_cast(&abs_VE[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_E[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_P[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_L[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_VL[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_I[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_Q[i]), sizeof(float)); dump_file.read(reinterpret_cast(&PRN_start_sample_count[i]), sizeof(uint64_t)); dump_file.read(reinterpret_cast(&acc_carrier_phase_rad[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_doppler_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_doppler_rate_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_freq_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_freq_rate_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_error_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_error_filt_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_error_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_error_filt_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&CN0_SNV_dB_Hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_lock_test[i]), sizeof(float)); dump_file.read(reinterpret_cast(&aux1[i]), sizeof(float)); dump_file.read(reinterpret_cast(&aux2[i]), sizeof(double)); dump_file.read(reinterpret_cast(&PRN[i]), sizeof(uint32_t)); } } dump_file.close(); } catch (const std::ifstream::failure &e) { std::cerr << "Problem reading dump file:" << e.what() << std::endl; delete[] abs_VE; delete[] abs_E; delete[] abs_P; delete[] abs_L; delete[] abs_VL; delete[] Prompt_I; delete[] Prompt_Q; delete[] PRN_start_sample_count; delete[] acc_carrier_phase_rad; delete[] carrier_doppler_hz; delete[] carrier_doppler_rate_hz; delete[] code_freq_chips; delete[] code_freq_rate_chips; delete[] carr_error_hz; delete[] carr_error_filt_hz; delete[] code_error_chips; delete[] code_error_filt_chips; delete[] CN0_SNV_dB_Hz; delete[] carrier_lock_test; delete[] aux1; delete[] aux2; delete[] PRN; return 1; } // WRITE MAT FILE mat_t *matfp; matvar_t *matvar; std::string filename = dump_filename_; filename.erase(filename.length() - 4, 4); filename.append(".mat"); matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73); if (reinterpret_cast(matfp) != nullptr) { size_t dims[2] = {1, static_cast(num_epoch)}; matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VE, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VL, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, acc_carrier_phase_rad, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_doppler_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_doppler_rate_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_doppler_rate_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_freq_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_freq_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_freq_rate_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_freq_rate_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_error_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_error_filt_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_error_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_error_filt_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, CN0_SNV_dB_Hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_lock_test", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_lock_test, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux1", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, aux1, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); } Mat_Close(matfp); delete[] abs_VE; delete[] abs_E; delete[] abs_P; delete[] abs_L; delete[] abs_VL; delete[] Prompt_I; delete[] Prompt_Q; delete[] PRN_start_sample_count; delete[] acc_carrier_phase_rad; delete[] carrier_doppler_hz; delete[] carrier_doppler_rate_hz; delete[] code_freq_chips; delete[] code_freq_rate_chips; delete[] carr_error_hz; delete[] carr_error_filt_hz; delete[] code_error_chips; delete[] code_error_filt_chips; delete[] CN0_SNV_dB_Hz; delete[] carrier_lock_test; delete[] aux1; delete[] aux2; delete[] PRN; return 0; } void dll_pll_veml_tracking_fpga::set_channel(uint32_t channel) { d_channel = channel; multicorrelator_fpga->set_channel(d_channel); LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump) { std::string dump_filename_ = d_dump_filename; // add channel number to the filename dump_filename_.append(std::to_string(d_channel)); // add extension dump_filename_.append(".dat"); if (!d_dump_file.is_open()) { try { //trk_parameters.dump_filename.append(boost::lexical_cast(d_channel)); //trk_parameters.dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(dump_filename_.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << dump_filename_.c_str(); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void dll_pll_veml_tracking_fpga::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; if (p_gnss_synchro->PRN > 0) { // When using the FPGA the SW only reads the sample counter during active tracking in order to spare CPU clock cycles. d_sample_counter = 0; d_sample_counter_next = 0; d_carrier_phase_rate_step_rad = 0.0; d_code_ph_history.clear(); d_carr_ph_history.clear(); if (systemName == "GPS" and signal_type == "L5") { if (trk_parameters.track_pilot) { d_Prompt_Data[0] = gr_complex(0.0, 0.0); } } else if (systemName == "Galileo" and signal_type == "1B") { if (trk_parameters.track_pilot) { d_Prompt_Data[0] = gr_complex(0.0, 0.0); } } else if (systemName == "Galileo" and signal_type == "5X") { if (trk_parameters.track_pilot) { d_secondary_code_string = const_cast(&GALILEO_E5A_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1]); d_Prompt_Data[0] = gr_complex(0.0, 0.0); } } std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0)); d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0.0; d_rem_carr_phase_rad = 0.0; d_rem_code_phase_chips = 0.0; d_acc_carrier_phase_rad = 0.0; d_cn0_estimation_counter = 0; d_carrier_lock_test = 1.0; d_CN0_SNV_dB_Hz = 0.0; if (d_veml) { d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); } else { d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); } d_current_correlation_time_s = d_code_period; // DLL/PLL filter initialization d_carrier_loop_filter.set_params(trk_parameters.fll_bw_hz, trk_parameters.pll_bw_hz, trk_parameters.pll_filter_order); d_code_loop_filter.set_noise_bandwidth(trk_parameters.dll_bw_hz); d_code_loop_filter.set_update_interval(d_code_period); d_code_loop_filter.initialize(); // initialize the code filter multicorrelator_fpga->set_local_code_and_taps(d_local_code_shift_chips, d_prompt_data_shift, d_acquisition_gnss_synchro->PRN); d_pull_in_transitory = true; d_cloop = true; d_Prompt_circular_buffer.clear(); } } void dll_pll_veml_tracking_fpga::stop_tracking() { d_state = 0; } void dll_pll_veml_tracking_fpga::reset(void) { multicorrelator_fpga->unlock_channel(); } int dll_pll_veml_tracking_fpga::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items __attribute__((unused)), gr_vector_void_star &output_items) { auto **out = reinterpret_cast(&output_items[0]); Gnss_Synchro current_synchro_data = Gnss_Synchro(); d_current_prn_length_samples = d_next_prn_length_samples; if (d_pull_in_transitory == true) { if (d_sample_counter > 0) // do not execute this condition until the sample counter has ben read for the first time after start_tracking { if (trk_parameters.pull_in_time_s < (d_sample_counter - d_acq_sample_stamp) / static_cast(trk_parameters.fs_in)) { d_pull_in_transitory = false; } } } switch (d_state) { case 0: // Standby - Consume samples at full throttle, do nothing { *out[0] = *d_acquisition_gnss_synchro; usleep(1000); return 1; } case 1: // Pull-in { // Signal alignment (skip samples until the incoming signal is aligned with local replica) int64_t acq_trk_diff_samples; double acq_trk_diff_seconds; double delta_trk_to_acq_prn_start_samples; multicorrelator_fpga->lock_channel(); uint64_t counter_value = multicorrelator_fpga->read_sample_counter(); uint64_t absolute_samples_offset; if (counter_value > (d_acq_sample_stamp + d_acq_code_phase_samples)) { // Signal alignment (skip samples until the incoming signal is aligned with local replica) acq_trk_diff_samples = static_cast(counter_value) - static_cast(d_acq_sample_stamp); acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / trk_parameters.fs_in; delta_trk_to_acq_prn_start_samples = static_cast(acq_trk_diff_samples) - d_acq_code_phase_samples; uint32_t num_frames = ceil((delta_trk_to_acq_prn_start_samples) / d_correlation_length_samples); absolute_samples_offset = static_cast(d_acq_code_phase_samples + d_acq_sample_stamp + num_frames * d_correlation_length_samples); } else { // test mode acq_trk_diff_samples = -static_cast(counter_value) + static_cast(d_acq_sample_stamp); acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / trk_parameters.fs_in; delta_trk_to_acq_prn_start_samples = static_cast(acq_trk_diff_samples) + d_acq_code_phase_samples; absolute_samples_offset = static_cast(delta_trk_to_acq_prn_start_samples); } multicorrelator_fpga->set_initial_sample(absolute_samples_offset); d_absolute_samples_offset = absolute_samples_offset; d_sample_counter = absolute_samples_offset; current_synchro_data.Tracking_sample_counter = absolute_samples_offset; d_sample_counter_next = d_sample_counter; // Doppler effect Fd = (C / (C + Vr)) * F double radial_velocity = (d_signal_carrier_freq + d_acq_carrier_doppler_hz) / d_signal_carrier_freq; // new chip and PRN sequence periods based on acq Doppler d_code_freq_chips = radial_velocity * d_code_chip_rate; d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in; d_code_phase_rate_step_chips = 0.0; //double T_chip_mod_seconds = 1.0 / d_code_freq_chips; //double T_prn_mod_seconds = T_chip_mod_seconds * static_cast(d_code_length_chips); //double T_prn_mod_samples = T_prn_mod_seconds * trk_parameters.fs_in; d_acq_code_phase_samples = absolute_samples_offset; //d_current_prn_length_samples = round(T_prn_mod_samples); d_current_prn_length_samples = trk_parameters.vector_length; d_next_prn_length_samples = d_current_prn_length_samples; int32_t samples_offset = round(d_acq_code_phase_samples); d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * static_cast(samples_offset); d_state = 2; d_cn0_smoother.reset(); // DEBUG OUTPUT std::cout << "Tracking of " << systemName << " " << signal_pretty_name << " signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; DLOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples << " ( " << acq_trk_diff_seconds << " s)"; std::cout << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples << " ( " << acq_trk_diff_seconds << " s)" << std::endl; DLOG(INFO) << "PULL-IN Doppler [Hz] = " << d_carrier_doppler_hz << ". PULL-IN Code Phase [samples] = " << d_acq_code_phase_samples; *out[0] = *d_acquisition_gnss_synchro; return 1; } case 2: // Wide tracking and symbol synchronization { d_sample_counter = d_sample_counter_next; d_sample_counter_next = d_sample_counter + static_cast(d_current_prn_length_samples); do_correlation_step(); // Save single correlation step variables if (d_veml) { d_VE_accu = *d_Very_Early; d_VL_accu = *d_Very_Late; } d_E_accu = *d_Early; d_P_accu = *d_Prompt; d_L_accu = *d_Late; // Check lock status if (!cn0_and_tracking_lock_status(d_code_period)) { clear_tracking_vars(); d_state = 0; // loss-of-lock detected } else { bool next_state = false; // Perform DLL/PLL tracking loop computations. Costas Loop enabled run_dll_pll(); update_tracking_vars(); // enable write dump file this cycle (valid DLL/PLL cycle) log_data(false); if (d_secondary) { // ####### SECONDARY CODE LOCK ##### d_Prompt_circular_buffer.push_back(*d_Prompt); if (d_Prompt_circular_buffer.size() == d_secondary_code_length) { next_state = acquire_secondary(); if (next_state) { LOG(INFO) << systemName << " " << signal_pretty_name << " secondary code locked in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; std::cout << systemName << " " << signal_pretty_name << " secondary code locked in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; } } } else if (d_symbols_per_bit > 1) //Signal does not have secondary code. Search a bit transition by sign change { float current_tracking_time_s = static_cast(d_sample_counter - d_absolute_samples_offset) / trk_parameters.fs_in; if (current_tracking_time_s > 10) { d_symbol_history.push_back(d_Prompt->real()); //******* preamble correlation ******** int32_t corr_value = 0; if ((static_cast(d_symbol_history.size()) == d_preamble_length_symbols)) // and (d_make_correlation or !d_flag_frame_sync)) { int i = 0; for (const auto &iter : d_symbol_history) { if (iter < 0.0) // symbols clipping { corr_value -= d_preambles_symbols[i]; } else { corr_value += d_preambles_symbols[i]; } i++; } } if (corr_value == d_preamble_length_symbols) { LOG(INFO) << systemName << " " << signal_pretty_name << " tracking preamble detected in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; next_state = true; } else { next_state = false; } } else { next_state = false; } } else { next_state = true; } // ########### Output the tracking results to Telemetry block ########## if (interchange_iq) { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).real()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).real()); } } else { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).imag()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); } } current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = d_correlation_length_ms; if (next_state) { // reset extended correlator d_VE_accu = gr_complex(0.0, 0.0); d_E_accu = gr_complex(0.0, 0.0); d_P_accu = gr_complex(0.0, 0.0); d_L_accu = gr_complex(0.0, 0.0); d_VL_accu = gr_complex(0.0, 0.0); d_Prompt_circular_buffer.clear(); d_current_symbol = 0; if (d_enable_extended_integration) { // UPDATE INTEGRATION TIME d_extend_correlation_symbols_count = 0; d_current_correlation_time_s = static_cast(trk_parameters.extend_correlation_symbols) * static_cast(d_code_period); d_state = 3; // next state is the extended correlator integrator LOG(INFO) << "Enabled " << trk_parameters.extend_correlation_symbols * static_cast(d_code_period * 1000.0) << " ms extended correlator in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN); std::cout << "Enabled " << trk_parameters.extend_correlation_symbols * static_cast(d_code_period * 1000.0) << " ms extended correlator in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; // Set narrow taps delay values [chips] d_code_loop_filter.set_update_interval(d_current_correlation_time_s); d_code_loop_filter.set_noise_bandwidth(trk_parameters.dll_bw_narrow_hz); d_carrier_loop_filter.set_params(trk_parameters.fll_bw_hz, trk_parameters.pll_bw_narrow_hz, trk_parameters.pll_filter_order); if (d_veml) { d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = -trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[3] = trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); } else { d_local_code_shift_chips[0] = -trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[2] = trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); } } else { d_state = 4; } } } break; } case 3: // coherent integration (correlation time extension) { d_sample_counter = d_sample_counter_next; d_sample_counter_next = d_sample_counter + static_cast(d_current_prn_length_samples); // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // perform a correlation step do_correlation_step(); update_tracking_vars(); save_correlation_results(); // ########### Output the tracking results to Telemetry block ########## if (interchange_iq) { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).real()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).real()); } } else { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).imag()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); } } current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = d_correlation_length_ms; d_extend_correlation_symbols_count++; if (d_extend_correlation_symbols_count == (trk_parameters.extend_correlation_symbols - 1)) { d_extend_correlation_symbols_count = 0; d_state = 4; } log_data(true); break; } case 4: // narrow tracking { d_sample_counter = d_sample_counter_next; d_sample_counter_next = d_sample_counter + static_cast(d_current_prn_length_samples); // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // perform a correlation step do_correlation_step(); save_correlation_results(); // check lock status if (!cn0_and_tracking_lock_status(d_code_period * static_cast(trk_parameters.extend_correlation_symbols))) { clear_tracking_vars(); d_state = 0; // loss-of-lock detected } else { run_dll_pll(); update_tracking_vars(); // ########### Output the tracking results to Telemetry block ########## if (interchange_iq) { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).real()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).real()); } } else { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).imag()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); } } current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = d_correlation_length_ms; // enable write dump file this cycle (valid DLL/PLL cycle) log_data(false); // reset extended correlator d_VE_accu = gr_complex(0.0, 0.0); d_E_accu = gr_complex(0.0, 0.0); d_P_accu = gr_complex(0.0, 0.0); d_L_accu = gr_complex(0.0, 0.0); d_VL_accu = gr_complex(0.0, 0.0); if (d_enable_extended_integration) { d_state = 3; // new coherent integration (correlation time extension) cycle } } } } if (current_synchro_data.Flag_valid_symbol_output) { current_synchro_data.fs = static_cast(trk_parameters.fs_in); current_synchro_data.Tracking_sample_counter = d_sample_counter_next; *out[0] = current_synchro_data; return 1; } return 0; }