/*! * \file galileo_e1_signal_processing.cc * \brief This library implements various functions for Galileo E1 signals * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e1_signal_processing.h" void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn, unsigned int _chip_shift) { std::string _galileo_signal = _Signal; signed int prn = _prn - 1; int* dest = _dest; /* A simple error check */ if ((_prn < 1) || (_prn > 50)) { return; } if (_galileo_signal.compare("1B") == 0) { for (size_t i = 0; i < Galileo_E1_B_PRIMARY_CODE[prn].length(); i++) { hex_to_binary_converter(dest, Galileo_E1_B_PRIMARY_CODE[prn].at(i)); dest = dest + 4; } } else if (_galileo_signal.compare("1C") == 0) { for (size_t i = 0; i < Galileo_E1_C_PRIMARY_CODE[prn].length(); i++) { hex_to_binary_converter(dest, Galileo_E1_C_PRIMARY_CODE[prn].at(i)); dest = dest + 4; } } else { return; } } void galileo_e1_sinboc_11_gen(std::complex* _dest, int* _prn, unsigned int _length_out) { const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS; unsigned int _period = (unsigned int) (_length_out / _length_in); for (unsigned int i = 0; i < _length_in; i++) { for (unsigned int j = 0; j < (_period / 2); j++) _dest[i * _period + j] = std::complex((float) _prn[i], 0.0); for (unsigned int j = (_period / 2); j < _period; j++) _dest[i * _period + j] = std::complex((float) (-_prn[i]), 0.0); } } void galileo_e1_sinboc_61_gen(std::complex* _dest, int* _prn, unsigned int _length_out) { const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS; unsigned int _period = (unsigned int) (_length_out / _length_in); for (unsigned int i = 0; i < _length_in; i++) { for (unsigned int j = 0; j < _period; j += 2) _dest[i * _period + j] = std::complex((float) _prn[i], 0.0); for (unsigned int j = 1; j < _period; j += 2) _dest[i * _period + j] = std::complex((float) (-_prn[i]), 0.0); } } void galileo_e1_gen(std::complex* _dest, int* _prn, char _Signal[3]) { std::string _galileo_signal = _Signal; const unsigned int _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS; const float alpha = sqrt(10.0 / 11.0); const float beta = sqrt(1.0 / 11.0); std::complex sinboc_11[_codeLength]; std::complex sinboc_61[_codeLength]; galileo_e1_sinboc_11_gen(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip galileo_e1_sinboc_61_gen(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip if (_galileo_signal.compare("1B") == 0) { for (unsigned int i = 0; i < _codeLength; i++) { _dest[i] = alpha * sinboc_11[i] + beta * sinboc_61[i]; } } else if (_galileo_signal.compare("1C") == 0) { for (unsigned int i = 0; i < _codeLength; i++) { _dest[i] = alpha * sinboc_11[i] - beta * sinboc_61[i]; } } else return; } void galileo_e1_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book unsigned int _samplesPerCode; const unsigned int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz unsigned int _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS; int primary_code_E1_chips[_codeLength]; _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength)); galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn, 0); //generate Galileo E1 code, 1 sample per chip if (_cboc == true) { _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS; std::complex _signal_E1[_codeLength]; galileo_e1_gen(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip resampler(_signal_E1, _dest, 12 * _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs } else { //--- Find number of samples per spreading code ---------------------------- _codeLength = 2 * Galileo_E1_B_CODE_LENGTH_CHIPS; std::complex _signal_E1[_codeLength]; galileo_e1_sinboc_11_gen(_signal_E1, primary_code_E1_chips, _codeLength); //generate sinboc(1,1) 2 samples per chip resampler(_signal_E1, _dest, 2 * _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs } }