/*! * \file geofunctions.cc * \brief A set of coordinate transformations functions and helpers, * some of them migrated from MATLAB, for geographic information systems. * \author Javier Arribas, 2018. jarribas(at)cttc.es * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "geofunctions.h" #include // for sin, cos, sqrt, abs, pow const double STRP_PI = 3.1415926535898; // Pi as defined in IS-GPS-200E arma::mat Skew_symmetric(const arma::vec &a) { arma::mat A = arma::zeros(3, 3); A << 0.0 << -a(2) << a(1) << arma::endr << a(2) << 0.0 << -a(0) << arma::endr << -a(1) << a(0) << 0 << arma::endr; // {{0, -a(2), a(1)}, // {a(2), 0, -a(0)}, // {-a(1), a(0), 0}}; return A; } double WGS84_g0(double Lat_rad) { const double k = 0.001931853; // normal gravity constant const double e2 = 0.00669438002290; // the square of the first numerical eccentricity const double nge = 9.7803253359; // normal gravity value on the equator (m/sec^2) double b = sin(Lat_rad); // Lat in degrees b = b * b; double g0 = nge * (1 + k * b) / (sqrt(1 - e2 * b)); return g0; } double WGS84_geocentric_radius(double Lat_geodetic_rad) { // WGS84 earth model Geocentric radius (Eq. 2.88) const double WGS84_A = 6378137.0; // Semi-major axis of the Earth, a [m] const double WGS84_IF = 298.257223563; // Inverse flattening of the Earth const double WGS84_F = (1.0 / WGS84_IF); // The flattening of the Earth // double WGS84_B=(WGS84_A*(1-WGS84_F)); // Semi-minor axis of the Earth [m] double WGS84_E = (sqrt(2 * WGS84_F - WGS84_F * WGS84_F)); // Eccentricity of the Earth // transverse radius of curvature double R_E = WGS84_A / sqrt(1 - WGS84_E * WGS84_E * sin(Lat_geodetic_rad) * sin(Lat_geodetic_rad)); // (Eq. 2.66) // geocentric radius at the Earth surface double r_eS = R_E * sqrt(cos(Lat_geodetic_rad) * cos(Lat_geodetic_rad) + (1 - WGS84_E * WGS84_E) * (1 - WGS84_E * WGS84_E) * sin(Lat_geodetic_rad) * sin(Lat_geodetic_rad)); // (Eq. 2.88) return r_eS; } int topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx) { double lambda; double phi; double h; const double dtr = STRP_PI / 180.0; const double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84 const double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84 // Transform x into geodetic coordinates togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2)); double cl = cos(lambda * dtr); double sl = sin(lambda * dtr); double cb = cos(phi * dtr); double sb = sin(phi * dtr); arma::mat F = {{-sl, -sb * cl, cb * cl}, {cl, -sb * sl, cb * sl}, {0.0, cb, sb}}; arma::vec local_vector; local_vector = arma::htrans(F) * dx; double E = local_vector(0); double N = local_vector(1); double U = local_vector(2); double hor_dis; hor_dis = sqrt(E * E + N * N); if (hor_dis < 1.0E-20) { *Az = 0.0; *El = 90.0; } else { *Az = atan2(E, N) / dtr; *El = atan2(U, hor_dis) / dtr; } if (*Az < 0) { *Az = *Az + 360.0; } *D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2)); return 0; } int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z) { *h = 0.0; const double tolsq = 1.e-10; // tolerance to accept convergence const int maxit = 10; // max number of iterations const double rtd = 180.0 / STRP_PI; // compute square of eccentricity double esq; if (finv < 1.0E-20) { esq = 0.0; } else { esq = (2.0 - 1.0 / finv) / finv; } // first guess double P = sqrt(X * X + Y * Y); // P is distance from spin axis // direct calculation of longitude if (P > 1.0E-20) { *dlambda = atan2(Y, X) * rtd; } else { *dlambda = 0.0; } // correct longitude bound if (*dlambda < 0) { *dlambda = *dlambda + 360.0; } double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0) double sinphi; if (r > 1.0E-20) { sinphi = Z / r; } else { sinphi = 0.0; } *dphi = asin(sinphi); // initial value of height = distance from origin minus // approximate distance from origin to surface of ellipsoid if (r < 1.0E-20) { *h = 0.0; return 1; } *h = r - a * (1 - sinphi * sinphi / finv); // iterate double cosphi; double N_phi; double dP; double dZ; double oneesq = 1.0 - esq; for (int i = 0; i < maxit; i++) { sinphi = sin(*dphi); cosphi = cos(*dphi); // compute radius of curvature in prime vertical direction N_phi = a / sqrt(1.0 - esq * sinphi * sinphi); // compute residuals in P and Z dP = P - (N_phi + (*h)) * cosphi; dZ = Z - (N_phi * oneesq + (*h)) * sinphi; // update height and latitude *h = *h + (sinphi * dZ + cosphi * dP); *dphi = *dphi + (cosphi * dZ - sinphi * dP) / (N_phi + (*h)); // test for convergence if ((dP * dP + dZ * dZ) < tolsq) { break; } if (i == (maxit - 1)) { // LOG(WARNING) << "The computation of geodetic coordinates did not converge"; } } *dphi = (*dphi) * rtd; return 0; } arma::mat Gravity_ECEF(const arma::vec &r_eb_e) { // Parameters const double R_0 = 6378137.0; // WGS84 Equatorial radius in meters const double mu = 3.986004418E14; // WGS84 Earth gravitational constant (m^3 s^-2) const double J_2 = 1.082627E-3; // WGS84 Earth's second gravitational constant const double omega_ie = 7.292115E-5; // Earth rotation rate (rad/s) // Calculate distance from center of the Earth double mag_r = sqrt(arma::as_scalar(r_eb_e.t() * r_eb_e)); // If the input position is 0,0,0, produce a dummy output arma::vec g = arma::zeros(3, 1); if (mag_r != 0) { // Calculate gravitational acceleration using (2.142) double z_scale = 5 * pow((r_eb_e(2) / mag_r), 2); arma::vec tmp_vec = {(1 - z_scale) * r_eb_e(0), (1 - z_scale) * r_eb_e(1), (3 - z_scale) * r_eb_e(2)}; arma::vec gamma_ = (-mu / pow(mag_r, 3)) * (r_eb_e + 1.5 * J_2 * pow(R_0 / mag_r, 2) * tmp_vec); // Add centripetal acceleration using (2.133) g(0) = gamma_(0) + pow(omega_ie, 2) * r_eb_e(0); g(1) = gamma_(1) + pow(omega_ie, 2) * r_eb_e(1); g(2) = gamma_(2); } return g; } arma::vec LLH_to_deg(const arma::vec &LLH) { const double rtd = 180.0 / STRP_PI; arma::vec deg = arma::zeros(3, 1); deg(0) = LLH(0) * rtd; deg(1) = LLH(1) * rtd; deg(2) = LLH(2); return deg; } double degtorad(double angleInDegrees) { double angleInRadians = (STRP_PI / 180.0) * angleInDegrees; return angleInRadians; } double radtodeg(double angleInRadians) { double angleInDegrees = (180.0 / STRP_PI) * angleInRadians; return angleInDegrees; } double mstoknotsh(double MetersPerSeconds) { double knots = mstokph(MetersPerSeconds) * 0.539957; return knots; } double mstokph(double MetersPerSeconds) { double kph = 3600.0 * MetersPerSeconds / 1e3; return kph; } arma::vec CTM_to_Euler(const arma::mat &C) { // Calculate Euler angles using (2.23) arma::mat CTM(C); arma::vec eul = arma::zeros(3, 1); eul(0) = atan2(CTM(1, 2), CTM(2, 2)); // roll if (CTM(0, 2) < -1.0) { CTM(0, 2) = -1.0; } if (CTM(0, 2) > 1.0) { CTM(0, 2) = 1.0; } eul(1) = -asin(CTM(0, 2)); // pitch eul(2) = atan2(CTM(0, 1), CTM(0, 0)); // yaw return eul; } arma::mat Euler_to_CTM(const arma::vec &eul) { // Eq.2.15 // Euler angles to Attitude matrix is equivalent to rotate the body // in the three axes: // arma::mat Ax= {{1,0,0}, {0,cos(Att_phi),sin(Att_phi)} ,{0,-sin(Att_phi),cos(Att_phi)}}; // arma::mat Ay= {{cos(Att_theta), 0, -sin(Att_theta)}, {0,1,0} , {sin(Att_theta), 0, cos(Att_theta)}}; // arma::mat Az= {{cos(Att_psi), sin(Att_psi), 0}, {-sin(Att_psi), cos(Att_psi), 0},{0,0,1}}; // arma::mat C_b_n=Ax*Ay*Az; // Attitude expressed in the LOCAL FRAME (NED) // C_b_n=C_b_n.t(); // Precalculate sines and cosines of the Euler angles double sin_phi = sin(eul(0)); double cos_phi = cos(eul(0)); double sin_theta = sin(eul(1)); double cos_theta = cos(eul(1)); double sin_psi = sin(eul(2)); double cos_psi = cos(eul(2)); // Calculate coordinate transformation matrix using (2.22) arma::mat C = {{cos_theta * cos_psi, cos_theta * sin_psi, -sin_theta}, {-cos_phi * sin_psi + sin_phi * sin_theta * cos_psi, cos_phi * cos_psi + sin_phi * sin_theta * sin_psi, sin_phi * cos_theta}, {sin_phi * sin_psi + cos_phi * sin_theta * cos_psi, -sin_phi * cos_psi + cos_phi * sin_theta * sin_psi, cos_phi * cos_theta}}; return C; } arma::vec cart2geo(const arma::vec &XYZ, int elipsoid_selection) { const double a[5] = {6378388.0, 6378160.0, 6378135.0, 6378137.0, 6378137.0}; const double f[5] = {1.0 / 297.0, 1.0 / 298.247, 1.0 / 298.26, 1.0 / 298.257222101, 1.0 / 298.257223563}; double lambda = atan2(XYZ[1], XYZ[0]); double ex2 = (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1.0 - f[elipsoid_selection]) * (1.0 - f[elipsoid_selection])); double c = a[elipsoid_selection] * sqrt(1.0 + ex2); double phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection])) * f[elipsoid_selection]))); double h = 0.1; double oldh = 0.0; double N; int iterations = 0; do { oldh = h; N = c / sqrt(1.0 + ex2 * (cos(phi) * cos(phi))); phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h))))); h = sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) / cos(phi) - N; iterations = iterations + 1; if (iterations > 100) { // std::cout << "Failed to approximate h with desired precision. h-oldh= " << h - oldh; break; } } while (std::fabs(h - oldh) > 1.0e-12); arma::vec LLH = {{phi, lambda, h}}; // radians return LLH; } void ECEF_to_Geo(const arma::vec &r_eb_e, const arma::vec &v_eb_e, const arma::mat &C_b_e, arma::vec &LLH, arma::vec &v_eb_n, arma::mat &C_b_n) { // Compute the Latitude of the ECEF position LLH = cart2geo(r_eb_e, 4); // ECEF -> WGS84 geographical // Calculate ECEF to Geographical coordinate transformation matrix using (2.150) double cos_lat = cos(LLH(0)); double sin_lat = sin(LLH(0)); double cos_long = cos(LLH(1)); double sin_long = sin(LLH(1)); // C++11 and arma >= 5.2 // arma::mat C_e_n = {{-sin_lat * cos_long, -sin_lat * sin_long, cos_lat}, // {-sin_long, cos_long, 0}, // {-cos_lat * cos_long, -cos_lat * sin_long, -sin_lat}}; //ECEF to Geo arma::mat C_e_n = arma::zeros(3, 3); C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr << -sin_long << cos_long << 0 << arma::endr << -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr; // ECEF to Geo // Transform velocity using (2.73) v_eb_n = C_e_n * v_eb_e; C_b_n = C_e_n * C_b_e; // Attitude conversion from ECEF to NED } void Geo_to_ECEF(const arma::vec &LLH, const arma::vec &v_eb_n, const arma::mat &C_b_n, arma::vec &r_eb_e, arma::vec &v_eb_e, arma::mat &C_b_e) { // Parameters double R_0 = 6378137.0; // WGS84 Equatorial radius in meters double e = 0.0818191908425; // WGS84 eccentricity // Calculate transverse radius of curvature using (2.105) double R_E = R_0 / sqrt(1.0 - (e * sin(LLH(0))) * (e * sin(LLH(0)))); // Convert position using (2.112) double cos_lat = cos(LLH(0)); double sin_lat = sin(LLH(0)); double cos_long = cos(LLH(1)); double sin_long = sin(LLH(1)); r_eb_e = {(R_E + LLH(2)) * cos_lat * cos_long, (R_E + LLH(2)) * cos_lat * sin_long, ((1 - e * e) * R_E + LLH(2)) * sin_lat}; // Calculate ECEF to Geo coordinate transformation matrix using (2.150) // C++11 and arma>=5.2 // arma::mat C_e_n = {{-sin_lat * cos_long, -sin_lat * sin_long, cos_lat}, // {-sin_long, cos_long, 0}, // {-cos_lat * cos_long, -cos_lat * sin_long, -sin_lat}}; arma::mat C_e_n = arma::zeros(3, 3); C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr << -sin_long << cos_long << 0 << arma::endr << -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr; // Transform velocity using (2.73) v_eb_e = C_e_n.t() * v_eb_n; // Transform attitude using (2.15) C_b_e = C_e_n.t() * C_b_n; } void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e) { // Parameters const double R_0 = 6378137.0; // WGS84 Equatorial radius in meters const double e = 0.0818191908425; // WGS84 eccentricity // Calculate transverse radius of curvature using (2.105) double R_E = R_0 / sqrt(1 - pow(e * sin(L_b), 2)); // Convert position using (2.112) double cos_lat = cos(L_b); double sin_lat = sin(L_b); double cos_long = cos(lambda_b); double sin_long = sin(lambda_b); r_eb_e = {(R_E + h_b) * cos_lat * cos_long, (R_E + h_b) * cos_lat * sin_long, ((1 - pow(e, 2)) * R_E + h_b) * sin_lat}; // Calculate ECEF to Geo coordinate transformation matrix using (2.150) arma::mat C_e_n = arma::zeros(3, 3); C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr << -sin_long << cos_long << 0 << arma::endr << -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr; // Transform velocity using (2.73) v_eb_e = C_e_n.t() * v_eb_n; } double great_circle_distance(double lat1, double lon1, double lat2, double lon2) { // The Haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. // generally used geo measurement function double R = 6378.137; // Radius of earth in KM double dLat = lat2 * STRP_PI / 180.0 - lat1 * STRP_PI / 180.0; double dLon = lon2 * STRP_PI / 180.0 - lon1 * STRP_PI / 180.0; double a = sin(dLat / 2.0) * sin(dLat / 2.0) + cos(lat1 * STRP_PI / 180.0) * cos(lat2 * STRP_PI / 180.0) * sin(dLon / 2) * sin(dLon / 2.0); double c = 2.0 * atan2(sqrt(a), sqrt(1.0 - a)); double d = R * c; return d * 1000.0; // meters } void cart2utm(const arma::vec &r_eb_e, int zone, arma::vec &r_enu) { // Transformation of (X,Y,Z) to (E,N,U) in UTM, zone 'zone' // // Inputs: // r_eb_e - Cartesian coordinates. Coordinates are referenced // with respect to the International Terrestrial Reference // Frame 1996 (ITRF96) // zone - UTM zone of the given position // // Outputs: // r_enu - UTM coordinates (Easting, Northing, Uping) // // Originally written in Matlab by Kai Borre, Nov. 1994 // Implemented in C++ by J.Arribas // // This implementation is based upon // O. Andersson & K. Poder (1981) Koordinattransformationer // ved Geod\ae{}tisk Institut. Landinspekt\oe{}ren // Vol. 30: 552--571 and Vol. 31: 76 // // An excellent, general reference (KW) is // R. Koenig & K.H. Weise (1951) Mathematische Grundlagen der // h\"oheren Geod\"asie und Kartographie. // Erster Band, Springer Verlag // // Explanation of variables used: // f flattening of ellipsoid // a semi major axis in m // m0 1 - scale at central meridian; for UTM 0.0004 // Q_n normalized meridian quadrant // E0 Easting of central meridian // L0 Longitude of central meridian // bg constants for ellipsoidal geogr. to spherical geogr. // gb constants for spherical geogr. to ellipsoidal geogr. // gtu constants for ellipsoidal N, E to spherical N, E // utg constants for spherical N, E to ellipoidal N, E // tolutm tolerance for utm, 1.2E-10*meridian quadrant // tolgeo tolerance for geographical, 0.00040 second of arc // // B, L refer to latitude and longitude. Southern latitude is negative // International ellipsoid of 1924, valid for ED50 double a = 6378388.0; double f = 1.0 / 297.0; double ex2 = (2.0 - f) * f / ((1.0 - f) * (1.0 - f)); double c = a * sqrt(1.0 + ex2); arma::vec vec = r_eb_e; vec(2) = vec(2) - 4.5; double alpha = 0.756e-6; arma::mat R = {{1.0, -alpha, 0.0}, {alpha, 1.0, 0.0}, {0.0, 0.0, 1.0}}; arma::vec trans = {89.5, 93.8, 127.6}; double scale = 0.9999988; arma::vec v = scale * R * vec + trans; // coordinate vector in ED50 double L = atan2(v(1), v(0)); double N1 = 6395000.0; // preliminary value double B = atan2(v(2) / ((1.0 - f) * (1.0 - f) * N1), arma::norm(v.subvec(0, 1)) / N1); // preliminary value double U = 0.1; double oldU = 0.0; int iterations = 0; while (fabs(U - oldU) > 1.0E-4) { oldU = U; N1 = c / sqrt(1.0 + ex2 * (cos(B) * cos(B))); B = atan2(v(2) / ((1.0 - f) * (1.0 - f) * N1 + U), arma::norm(v.subvec(0, 1)) / (N1 + U)); U = arma::norm(v.subvec(0, 1)) / cos(B) - N1; iterations = iterations + 1; if (iterations > 100) { std::cout << "Failed to approximate U with desired precision. U-oldU:" << U - oldU << std::endl; break; } } // Normalized meridian quadrant, KW p. 50 (96), p. 19 (38b), p. 5 (21) double m0 = 0.0004; double n = f / (2.0 - f); double m = n * n * (1.0 / 4.0 + n * n / 64.0); double w = (a * (-n - m0 + m * (1.0 - m0))) / (1.0 + n); double Q_n = a + w; // Easting and longitude of central meridian double E0 = 500000.0; double L0 = (zone - 30) * 6.0 - 3.0; // Check tolerance for reverse transformation // double tolutm = STRP_PI / 2.0 * 1.2e-10 * Q_n; // double tolgeo = 0.000040; // Coefficients of trigonometric series // // ellipsoidal to spherical geographical, KW p .186 --187, (51) - (52) // bg[1] = n * (-2 + n * (2 / 3 + n * (4 / 3 + n * (-82 / 45)))); // bg[2] = n ^ 2 * (5 / 3 + n * (-16 / 15 + n * (-13 / 9))); // bg[3] = n ^ 3 * (-26 / 15 + n * 34 / 21); // bg[4] = n ^ 4 * 1237 / 630; // // spherical to ellipsoidal geographical, KW p.190 --191, (61) - (62) % gb[1] = n * (2 + n * (-2 / 3 + n * (-2 + n * 116 / 45))); // gb[2] = n ^ 2 * (7 / 3 + n * (-8 / 5 + n * (-227 / 45))); // gb[3] = n ^ 3 * (56 / 15 + n * (-136 / 35)); // gb[4] = n ^ 4 * 4279 / 630; // // spherical to ellipsoidal N, E, KW p.196, (69) % gtu[1] = n * (1 / 2 + n * (-2 / 3 + n * (5 / 16 + n * 41 / 180))); // gtu[2] = n ^ 2 * (13 / 48 + n * (-3 / 5 + n * 557 / 1440)); // gtu[3] = n ^ 3 * (61 / 240 + n * (-103 / 140)); // gtu[4] = n ^ 4 * 49561 / 161280; // // ellipsoidal to spherical N, E, KW p.194, (65) % utg[1] = n * (-1 / 2 + n * (2 / 3 + n * (-37 / 96 + n * 1 / 360))); // utg[2] = n ^ 2 * (-1 / 48 + n * (-1 / 15 + n * 437 / 1440)); // utg[3] = n ^ 3 * (-17 / 480 + n * 37 / 840); // utg[4] = n ^ 4 * (-4397 / 161280); // // With f = 1 / 297 we get arma::colvec bg = {-3.37077907e-3, 4.73444769e-6, -8.29914570e-9, 1.58785330e-11}; arma::colvec gb = {3.37077588e-3, 6.62769080e-6, 1.78718601e-8, 5.49266312e-11}; arma::colvec gtu = {8.41275991e-4, 7.67306686e-7, 1.21291230e-9, 2.48508228e-12}; arma::colvec utg = {-8.41276339e-4, -5.95619298e-8, -1.69485209e-10, -2.20473896e-13}; // Ellipsoidal latitude, longitude to spherical latitude, longitude bool neg_geo = false; if (B < 0.0) { neg_geo = true; } double Bg_r = fabs(B); double res_clensin = clsin(bg, 4, 2.0 * Bg_r); Bg_r = Bg_r + res_clensin; L0 = L0 * STRP_PI / 180.0; double Lg_r = L - L0; // Spherical latitude, longitude to complementary spherical latitude % i.e.spherical N, E double cos_BN = cos(Bg_r); double Np = atan2(sin(Bg_r), cos(Lg_r) * cos_BN); double Ep = atanh(sin(Lg_r) * cos_BN); // Spherical normalized N, E to ellipsoidal N, E Np = 2.0 * Np; Ep = 2.0 * Ep; double dN; double dE; clksin(gtu, 4, Np, Ep, &dN, &dE); Np = Np / 2.0; Ep = Ep / 2.0; Np = Np + dN; Ep = Ep + dE; double N = Q_n * Np; double E = Q_n * Ep + E0; if (neg_geo) { N = -N + 20000000.0; } r_enu(0) = E; r_enu(1) = N; r_enu(2) = U; } double clsin(const arma::colvec &ar, int degree, double argument) { // Clenshaw summation of sinus of argument. // // result = clsin(ar, degree, argument); // // Originally written in Matlab by Kai Borre // Implemented in C++ by J.Arribas double cos_arg = 2.0 * cos(argument); double hr1 = 0.0; double hr = 0.0; double hr2; for (int t = degree; t > 0; t--) { hr2 = hr1; hr1 = hr; hr = ar(t - 1) + cos_arg * hr1 - hr2; } return (hr * sin(argument)); } void clksin(const arma::colvec &ar, int degree, double arg_real, double arg_imag, double *re, double *im) { // Clenshaw summation of sinus with complex argument // [re, im] = clksin(ar, degree, arg_real, arg_imag); // // Originally written in Matlab by Kai Borre // Implemented in C++ by J.Arribas double sin_arg_r = sin(arg_real); double cos_arg_r = cos(arg_real); double sinh_arg_i = sinh(arg_imag); double cosh_arg_i = cosh(arg_imag); double r = 2.0 * cos_arg_r * cosh_arg_i; double i = -2.0 * sin_arg_r * sinh_arg_i; double hr1 = 0.0; double hr = 0.0; double hi1 = 0.0; double hi = 0.0; double hi2; double hr2; for (int t = degree; t > 0; t--) { hr2 = hr1; hr1 = hr; hi2 = hi1; hi1 = hi; double z = ar(t - 1) + r * hr1 - i * hi - hr2; hi = i * hr1 + r * hi1 - hi2; hr = z; } r = sin_arg_r * cosh_arg_i; i = cos_arg_r * sinh_arg_i; *re = r * hr - i * hi; *im = r * hi + i * hr; } int findUtmZone(double latitude_deg, double longitude_deg) { // Function finds the UTM zone number for given longitude and latitude. // The longitude value must be between -180 (180 degree West) and 180 (180 // degree East) degree. The latitude must be within -80 (80 degree South) and // 84 (84 degree North). // // utmZone = findUtmZone(latitude, longitude); // // Latitude and longitude must be in decimal degrees (e.g. 15.5 degrees not // 15 deg 30 min). // // Originally written in Matlab by Darius Plausinaitis // Implemented in C++ by J.Arribas // Check value bounds if ((longitude_deg > 180.0) || (longitude_deg < -180.0)) { std::cout << "Longitude value exceeds limits (-180:180).\n"; } if ((latitude_deg > 84.0) || (latitude_deg < -80.0)) { std::cout << "Latitude value exceeds limits (-80:84).\n"; } // // Find zone // // Start at 180 deg west = -180 deg int utmZone = floor((180 + longitude_deg) / 6) + 1; // Correct zone numbers for particular areas if (latitude_deg > 72.0) { // Corrections for zones 31 33 35 37 if ((longitude_deg >= 0.0) && (longitude_deg < 9.0)) { utmZone = 31; } else if ((longitude_deg >= 9.0) && (longitude_deg < 21.0)) { utmZone = 33; } else if ((longitude_deg >= 21.0) && (longitude_deg < 33.0)) { utmZone = 35; } else if ((longitude_deg >= 33.0) && (longitude_deg < 42.0)) { utmZone = 37; } } else if ((latitude_deg >= 56.0) && (latitude_deg < 64.0)) { // Correction for zone 32 if ((longitude_deg >= 3.0) && (longitude_deg < 12.0)) { utmZone = 32; } } return utmZone; }