/*! * \file tracking_discriminators.cc * \brief Implementation of a library with a set of code tracking * and carrier tracking discriminators that is used by the tracking algorithms. * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "tracking_discriminators.h" #include // All the outputs are in RADIANS /* * FLL four quadrant arctan discriminator: * \f{equation} * \frac{\phi_2-\phi_1}{t_2-t1}=\frac{ATAN2(cross,dot)}{t_1-t_2}, * \f} * where \f$cross=I_{PS1}Q_{PS2}-I_{PS2}Q_{PS1}\f$ and \f$dot=I_{PS1}I_{PS2}+Q_{PS1}Q_{PS2}\f$, * \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and * \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second]. */ double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2) { double cross, dot; dot = prompt_s1.real() * prompt_s2.real() + prompt_s1.imag() * prompt_s2.imag(); cross = prompt_s1.real() * prompt_s2.imag() - prompt_s2.real() * prompt_s1.imag(); return atan2(cross, dot) / (t2 - t1); } /* * PLL four quadrant arctan discriminator: * \f{equation} * \phi=ATAN2(Q_{PS},I_{PS}), * \f} * where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians]. */ double pll_four_quadrant_atan(gr_complex prompt_s1) { return static_cast(std::atan2(prompt_s1.imag(), prompt_s1.real())); } /* * PLL Costas loop two quadrant arctan discriminator: * \f{equation} * \phi=ATAN\left(\frac{Q_{PS}}{I_{PS}}\right), * \f} * where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians]. */ double pll_cloop_two_quadrant_atan(gr_complex prompt_s1) { if (prompt_s1.real() != 0.0) { return static_cast(std::atan(prompt_s1.imag() / prompt_s1.real())); } return 0.0; } /* * DLL Noncoherent Early minus Late envelope normalized discriminator: * \f{equation} * error=\frac{1}{2}\frac{E-L}{E+L}, * \f} * where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and * \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips]. */ double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1) { double P_early, P_late; P_early = std::abs(early_s1); P_late = std::abs(late_s1); if (P_early + P_late == 0.0) { return 0.0; } return 0.5 * (P_early - P_late) / (P_early + P_late); } /* * DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator, using the outputs * of four correlators, Very Early (VE), Early (E), Late (L) and Very Late (VL): * \f{equation} * error=\frac{E-L}{E+L}, * \f} * where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and * \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips]. */ double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1) { double P_early, P_late; P_early = std::sqrt(std::norm(very_early_s1) + std::norm(early_s1)); P_late = std::sqrt(std::norm(very_late_s1) + std::norm(late_s1)); if (P_early + P_late == 0.0) { return 0.0; } return (P_early - P_late) / (P_early + P_late); }