/*! * \file pvt_solution.cc * \brief Implementation of a base class for a PVT solution * \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "pvt_solution.h" #include #include "GPS_L1_CA.h" #include #include using google::LogMessage; DEFINE_bool(tropo, true, "Apply tropospheric correction"); Pvt_Solution::Pvt_Solution() { d_latitude_d = 0.0; d_longitude_d = 0.0; d_height_m = 0.0; d_avg_latitude_d = 0.0; d_avg_longitude_d = 0.0; d_avg_height_m = 0.0; d_GDOP = 0.0; d_PDOP = 0.0; d_HDOP = 0.0; d_VDOP = 0.0; d_TDOP = 0.0; d_flag_averaging = false; b_valid_position = false; d_averaging_depth = 0; d_valid_observations = 0; d_rx_dt_m = 0.0; } arma::vec Pvt_Solution::rotateSatellite(double const traveltime, const arma::vec & X_sat) { /* * Returns rotated satellite ECEF coordinates due to Earth * rotation during signal travel time * * Inputs: * travelTime - signal travel time * X_sat - satellite's ECEF coordinates * * Returns: * X_sat_rot - rotated satellite's coordinates (ECEF) */ //--- Find rotation angle -------------------------------------------------- double omegatau; omegatau = OMEGA_EARTH_DOT * traveltime; //--- Build a rotation matrix ---------------------------------------------- arma::mat R3 = arma::zeros(3,3); R3(0, 0) = cos(omegatau); R3(0, 1) = sin(omegatau); R3(0, 2) = 0.0; R3(1, 0) = -sin(omegatau); R3(1, 1) = cos(omegatau); R3(1, 2) = 0.0; R3(2, 0) = 0.0; R3(2, 1) = 0.0; R3(2, 2) = 1; //--- Do the rotation ------------------------------------------------------ arma::vec X_sat_rot; X_sat_rot = R3 * X_sat; return X_sat_rot; } int Pvt_Solution::cart2geo(double X, double Y, double Z, int elipsoid_selection) { /* Conversion of Cartesian coordinates (X,Y,Z) to geographical coordinates (latitude, longitude, h) on a selected reference ellipsoid. Choices of Reference Ellipsoid for Geographical Coordinates 0. International Ellipsoid 1924 1. International Ellipsoid 1967 2. World Geodetic System 1972 3. Geodetic Reference System 1980 4. World Geodetic System 1984 */ const double a[5] = {6378388.0, 6378160.0, 6378135.0, 6378137.0, 6378137.0}; const double f[5] = {1.0 / 297.0, 1.0 / 298.247, 1.0 / 298.26, 1.0 / 298.257222101, 1.0 / 298.257223563}; double lambda = atan2(Y, X); double ex2 = (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1.0 - f[elipsoid_selection]) * (1.0 - f[elipsoid_selection])); double c = a[elipsoid_selection] * sqrt(1.0 + ex2); double phi = atan(Z / ((sqrt(X * X + Y * Y) * (1.0 - (2.0 - f[elipsoid_selection])) * f[elipsoid_selection]))); double h = 0.1; double oldh = 0.0; double N; int iterations = 0; do { oldh = h; N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi))); phi = atan(Z / ((sqrt(X * X + Y * Y) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h) )))); h = sqrt(X * X + Y * Y) / cos(phi) - N; iterations = iterations + 1; if (iterations > 100) { LOG(WARNING) << "Failed to approximate h with desired precision. h-oldh= " << h - oldh; break; } } while (std::abs(h - oldh) > 1.0e-12); d_latitude_d = phi * 180.0 / GPS_PI; d_longitude_d = lambda * 180.0 / GPS_PI; d_height_m = h; return 0; } int Pvt_Solution::togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z) { /* Subroutine to calculate geodetic coordinates latitude, longitude, height given Cartesian coordinates X,Y,Z, and reference ellipsoid values semi-major axis (a) and the inverse of flattening (finv). The output units of angular quantities will be in decimal degrees (15.5 degrees not 15 deg 30 min). The output units of h will be the same as the units of X,Y,Z,a. Inputs: a - semi-major axis of the reference ellipsoid finv - inverse of flattening of the reference ellipsoid X,Y,Z - Cartesian coordinates Outputs: dphi - latitude dlambda - longitude h - height above reference ellipsoid Based in a Matlab function by Kai Borre */ *h = 0; double tolsq = 1.e-10; // tolerance to accept convergence int maxit = 10; // max number of iterations double rtd = 180.0 / GPS_PI; // compute square of eccentricity double esq; if (finv < 1.0E-20) { esq = 0.0; } else { esq = (2.0 - 1.0 / finv) / finv; } // first guess double P = sqrt(X * X + Y * Y); // P is distance from spin axis //direct calculation of longitude if (P > 1.0E-20) { *dlambda = atan2(Y, X) * rtd; } else { *dlambda = 0.0; } // correct longitude bound if (*dlambda < 0) { *dlambda = *dlambda + 360.0; } double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0) double sinphi; if (r > 1.0E-20) { sinphi = Z/r; } else { sinphi = 0.0; } *dphi = asin(sinphi); // initial value of height = distance from origin minus // approximate distance from origin to surface of ellipsoid if (r < 1.0E-20) { *h = 0; return 1; } *h = r - a * (1 - sinphi * sinphi/finv); // iterate double cosphi; double N_phi; double dP; double dZ; double oneesq = 1.0 - esq; for (int i = 0; i < maxit; i++) { sinphi = sin(*dphi); cosphi = cos(*dphi); // compute radius of curvature in prime vertical direction N_phi = a / sqrt(1 - esq * sinphi * sinphi); // compute residuals in P and Z dP = P - (N_phi + (*h)) * cosphi; dZ = Z - (N_phi * oneesq + (*h)) * sinphi; // update height and latitude *h = *h + (sinphi * dZ + cosphi * dP); *dphi = *dphi + (cosphi * dZ - sinphi * dP)/(N_phi + (*h)); // test for convergence if ((dP * dP + dZ * dZ) < tolsq) { break; } if (i == (maxit - 1)) { LOG(WARNING) << "The computation of geodetic coordinates did not converge"; } } *dphi = (*dphi) * rtd; return 0; } int Pvt_Solution::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km) { /* Inputs: sinel - sin of elevation angle of satellite hsta_km - height of station in km p_mb - atmospheric pressure in mb at height hp_km t_kel - surface temperature in degrees Kelvin at height htkel_km hum - humidity in % at height hhum_km hp_km - height of pressure measurement in km htkel_km - height of temperature measurement in km hhum_km - height of humidity measurement in km Outputs: ddr_m - range correction (meters) Reference Goad, C.C. & Goodman, L. (1974) A Modified Hopfield Tropospheric Refraction Correction Model. Paper presented at the American Geophysical Union Annual Fall Meeting, San Francisco, December 12-17 Translated to C++ by Carles Fernandez from a Matlab implementation by Kai Borre */ const double a_e = 6378.137; // semi-major axis of earth ellipsoid const double b0 = 7.839257e-5; const double tlapse = -6.5; const double em = -978.77 / (2.8704e6 * tlapse * 1.0e-5); double tkhum = t_kel + tlapse * (hhum_km - htkel_km); double atkel = 7.5 * (tkhum - 273.15) / (237.3 + tkhum - 273.15); double e0 = 0.0611 * hum * pow(10, atkel); double tksea = t_kel - tlapse * htkel_km; double tkelh = tksea + tlapse * hhum_km; double e0sea = e0 * pow((tksea / tkelh), (4 * em)); double tkelp = tksea + tlapse * hp_km; double psea = p_mb * pow((tksea / tkelp), em); if(sinel < 0) { sinel = 0.0; } double tropo_delay = 0.0; bool done = false; double refsea = 77.624e-6 / tksea; double htop = 1.1385e-5 / refsea; refsea = refsea * psea; double ref = refsea * pow(((htop - hsta_km) / htop), 4); double a; double b; double rtop; while(1) { rtop = pow((a_e + htop), 2) - pow((a_e + hsta_km), 2) * (1 - pow(sinel, 2)); // check to see if geometry is crazy if(rtop < 0) { rtop = 0; } rtop = sqrt(rtop) - (a_e + hsta_km) * sinel; a = -sinel / (htop - hsta_km); b = -b0 * (1 - pow(sinel,2)) / (htop - hsta_km); arma::vec rn = arma::vec(8); rn.zeros(); for(int i = 0; i<8; i++) { rn(i) = pow(rtop, (i+1+1)); } arma::rowvec alpha = {2 * a, 2 * pow(a, 2) + 4 * b /3, a * (pow(a, 2) + 3 * b), pow(a, 4)/5 + 2.4 * pow(a, 2) * b + 1.2 * pow(b, 2), 2 * a * b * (pow(a, 2) + 3 * b)/3, pow(b, 2) * (6 * pow(a, 2) + 4 * b) * 1.428571e-1, 0, 0}; if(pow(b, 2) > 1.0e-35) { alpha(6) = a * pow(b, 3) /2; alpha(7) = pow(b, 4) / 9; } double dr = rtop; arma::mat aux_ = alpha * rn; dr = dr + aux_(0, 0); tropo_delay = tropo_delay + dr * ref * 1000; if(done == true) { *ddr_m = tropo_delay; break; } done = true; refsea = (371900.0e-6 / tksea - 12.92e-6) / tksea; htop = 1.1385e-5 * (1255 / tksea + 0.05) / refsea; ref = refsea * e0sea * pow(((htop - hsta_km) / htop), 4); } return 0; } int Pvt_Solution::topocent(double *Az, double *El, double *D, const arma::vec & x, const arma::vec & dx) { /* Transformation of vector dx into topocentric coordinate system with origin at x Inputs: x - vector origin coordinates (in ECEF system [X; Y; Z;]) dx - vector ([dX; dY; dZ;]). Outputs: D - vector length. Units like the input Az - azimuth from north positive clockwise, degrees El - elevation angle, degrees Based on a Matlab function by Kai Borre */ double lambda; double phi; double h; double dtr = GPS_PI / 180.0; double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84 double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84 // Transform x into geodetic coordinates Pvt_Solution::togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2)); double cl = cos(lambda * dtr); double sl = sin(lambda * dtr); double cb = cos(phi * dtr); double sb = sin(phi * dtr); arma::mat F = arma::zeros(3,3); F(0,0) = -sl; F(0,1) = -sb * cl; F(0,2) = cb * cl; F(1,0) = cl; F(1,1) = -sb * sl; F(1,2) = cb * sl; F(2,0) = 0; F(2,1) = cb; F(2,2) = sb; arma::vec local_vector; local_vector = arma::htrans(F) * dx; double E = local_vector(0); double N = local_vector(1); double U = local_vector(2); double hor_dis; hor_dis = sqrt(E * E + N * N); if (hor_dis < 1.0E-20) { *Az = 0; *El = 90; } else { *Az = atan2(E, N) / dtr; *El = atan2(U, hor_dis) / dtr; } if (*Az < 0) { *Az = *Az + 360.0; } *D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2)); return 0; } int Pvt_Solution::compute_DOP() { // ###### Compute DOPs ######## // 1- Rotation matrix from ECEF coordinates to ENU coordinates // ref: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates arma::mat F = arma::zeros(3,3); F(0,0) = -sin(GPS_TWO_PI * (d_longitude_d/360.0)); F(0,1) = -sin(GPS_TWO_PI * (d_latitude_d/360.0)) * cos(GPS_TWO_PI * (d_longitude_d/360.0)); F(0,2) = cos(GPS_TWO_PI * (d_latitude_d/360.0)) * cos(GPS_TWO_PI * (d_longitude_d/360.0)); F(1,0) = cos((GPS_TWO_PI * d_longitude_d)/360.0); F(1,1) = -sin((GPS_TWO_PI * d_latitude_d)/360.0) * sin((GPS_TWO_PI * d_longitude_d)/360.0); F(1,2) = cos((GPS_TWO_PI * d_latitude_d/360.0)) * sin((GPS_TWO_PI * d_longitude_d)/360.0); F(2,0) = 0; F(2,1) = cos((GPS_TWO_PI * d_latitude_d)/360.0); F(2,2) = sin((GPS_TWO_PI * d_latitude_d/360.0)); // 2- Apply the rotation to the latest covariance matrix (available in ECEF from LS) arma::mat Q_ECEF = d_Q.submat(0, 0, 2, 2); arma::mat DOP_ENU = arma::zeros(3, 3); try { DOP_ENU = arma::htrans(F) * Q_ECEF * F; d_GDOP = sqrt(arma::trace(DOP_ENU)); // Geometric DOP d_PDOP = sqrt(DOP_ENU(0, 0) + DOP_ENU(1, 1) + DOP_ENU(2, 2));// PDOP d_HDOP = sqrt(DOP_ENU(0, 0) + DOP_ENU(1, 1)); // HDOP d_VDOP = sqrt(DOP_ENU(2, 2)); // VDOP d_TDOP = sqrt(d_Q(3, 3)); // TDOP } catch(std::exception& ex) { d_GDOP = -1; // Geometric DOP d_PDOP = -1; // PDOP d_HDOP = -1; // HDOP d_VDOP = -1; // VDOP d_TDOP = -1; // TDOP } return 0; } int Pvt_Solution::set_averaging_depth(int depth) { d_averaging_depth = depth; return 0; } int Pvt_Solution::pos_averaging(bool flag_averaring) { // MOVING AVERAGE PVT bool avg = flag_averaring; if (avg == true) { if (d_hist_longitude_d.size() == (unsigned int)d_averaging_depth) { // Pop oldest value d_hist_longitude_d.pop_back(); d_hist_latitude_d.pop_back(); d_hist_height_m.pop_back(); // Push new values d_hist_longitude_d.push_front(d_longitude_d); d_hist_latitude_d.push_front(d_latitude_d); d_hist_height_m.push_front(d_height_m); d_avg_latitude_d = 0.0; d_avg_longitude_d = 0.0; d_avg_height_m = 0.0; for (unsigned int i = 0; i < d_hist_longitude_d.size(); i++) { d_avg_latitude_d = d_avg_latitude_d + d_hist_latitude_d.at(i); d_avg_longitude_d = d_avg_longitude_d + d_hist_longitude_d.at(i); d_avg_height_m = d_avg_height_m + d_hist_height_m.at(i); } d_avg_latitude_d = d_avg_latitude_d / static_cast(d_averaging_depth); d_avg_longitude_d = d_avg_longitude_d / static_cast(d_averaging_depth); d_avg_height_m = d_avg_height_m / static_cast(d_averaging_depth); b_valid_position = true; } else { //int current_depth=d_hist_longitude_d.size(); // Push new values d_hist_longitude_d.push_front(d_longitude_d); d_hist_latitude_d.push_front(d_latitude_d); d_hist_height_m.push_front(d_height_m); d_avg_latitude_d = d_latitude_d; d_avg_longitude_d = d_longitude_d; d_avg_height_m = d_height_m; b_valid_position = false; } } else { b_valid_position = true; } return 0; }