/*!
* \file rtklib_rtkpos.cc
* \brief rtklib ppp-related functions
* \authors
* - 2007-2013, T. Takasu
*
- 2017, Javier Arribas
*
- 2017, Carles Fernandez
*
*
* This is a derived work from RTKLIB http://www.rtklib.com/
* The original source code at https://github.com/tomojitakasu/RTKLIB is
* released under the BSD 2-clause license with an additional exclusive clause
* that does not apply here. This additional clause is reproduced below:
*
* " The software package includes some companion executive binaries or shared
* libraries necessary to execute APs on Windows. These licenses succeed to the
* original ones of these software. "
*
* Neither the executive binaries nor the shared libraries are required by, used
* or included in GNSS-SDR.
*
* -----------------------------------------------------------------------------
* Copyright (C) 2007-2013, T. Takasu
* Copyright (C) 2017, Javier Arribas
* Copyright (C) 2017, Carles Fernandez
* All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause
* -----------------------------------------------------------------------------
*/
#include "rtklib_rtkpos.h"
#include "rtklib_ephemeris.h"
#include "rtklib_lambda.h"
#include "rtklib_pntpos.h"
#include "rtklib_ppp.h"
#include "rtklib_tides.h"
#include
#include
#include
#include
static int resamb_WLNL(rtk_t *rtk __attribute((unused)), const obsd_t *obs __attribute((unused)), const int *sat __attribute((unused)),
const int *iu __attribute((unused)), const int *ir __attribute((unused)), int ns __attribute__((unused)), const nav_t *nav __attribute((unused)),
const double *azel __attribute((unused))) { return 0; }
static int resamb_TCAR(rtk_t *rtk __attribute((unused)), const obsd_t *obs __attribute((unused)), const int *sat __attribute((unused)),
const int *iu __attribute((unused)), const int *ir __attribute((unused)), int ns __attribute((unused)), const nav_t *nav __attribute((unused)),
const double *azel __attribute((unused))) { return 0; }
/* global variables ----------------------------------------------------------*/
static int statlevel = 0; /* rtk status output level (0:off) */
static FILE *fp_stat = nullptr; /* rtk status file pointer */
static char file_stat[1024] = ""; /* rtk status file original path */
static gtime_t time_stat = {0, 0}; /* rtk status file time */
/* open solution status file ---------------------------------------------------
* open solution status file and set output level
* args : char *file I rtk status file
* int level I rtk status level (0: off)
* return : status (1:ok,0:error)
* notes : file can constain time keywords (%Y,%y,%m...) defined in reppath().
* The time to replace keywords is based on UTC of CPU time.
* output : solution status file record format
*
* $POS,week,tow,stat,posx,posy,posz,posxf,posyf,poszf
* week/tow : gps week no/time of week (s)
* stat : solution status
* posx/posy/posz : position x/y/z ecef (m) float
* posxf/posyf/poszf : position x/y/z ecef (m) fixed
*
* $VELACC,week,tow,stat,vele,veln,velu,acce,accn,accu,velef,velnf,veluf,accef,accnf,accuf
* week/tow : gps week no/time of week (s)
* stat : solution status
* vele/veln/velu : velocity e/n/u (m/s) float
* acce/accn/accu : acceleration e/n/u (m/s^2) float
* velef/velnf/veluf : velocity e/n/u (m/s) fixed
* accef/accnf/accuf : acceleration e/n/u (m/s^2) fixed
*
* $CLK,week,tow,stat,clk1,clk2,clk3,clk4
* week/tow : gps week no/time of week (s)
* stat : solution status
* clk1 : receiver clock bias GPS (ns)
* clk2 : receiver clock bias GLO-GPS (ns)
* clk3 : receiver clock bias GAL-GPS (ns)
* clk4 : receiver clock bias BDS-GPS (ns)
*
* $ION,week,tow,stat,sat,az,el,ion,ion-fixed
* week/tow : gps week no/time of week (s)
* stat : solution status
* sat : satellite id
* az/el : azimuth/elevation angle(deg)
* ion : vertical ionospheric delay L1 (m) float
* ion-fixed: vertical ionospheric delay L1 (m) fixed
*
* $TROP,week,tow,stat,rcv,ztd,ztdf
* week/tow : gps week no/time of week (s)
* stat : solution status
* rcv : receiver (1:rover,2:base station)
* ztd : zenith total delay (m) float
* ztdf : zenith total delay (m) fixed
*
* $HWBIAS,week,tow,stat,frq,bias,biasf
* week/tow : gps week no/time of week (s)
* stat : solution status
* frq : frequency (1:L1,2:L2,...)
* bias : h/w bias coefficient (m/MHz) float
* biasf : h/w bias coefficient (m/MHz) fixed
*
* $SAT,week,tow,sat,frq,az,el,resp,resc,vsat,snr,fix,slip,lock,outc,slipc,rejc
* week/tow : gps week no/time of week (s)
* sat/frq : satellite id/frequency (1:L1,2:L2,...)
* az/el : azimuth/elevation angle (deg)
* resp : pseudorange residual (m)
* resc : carrier-phase residual (m)
* vsat : valid data flag (0:invalid,1:valid)
* snr : signal strength (dbHz)
* fix : ambiguity flag (0:no data,1:float,2:fixed,3:hold,4:ppp)
* slip : cycle-slip flag (bit1:slip,bit2:parity unknown)
* lock : carrier-lock count
* outc : data outage count
* slipc : cycle-slip count
* rejc : data reject (outlier) count
*
*-----------------------------------------------------------------------------*/
int rtkopenstat(const char *file, int level)
{
gtime_t time = utc2gpst(timeget());
std::string path;
trace(3, "rtkopenstat: file=%s level=%d\n", file, level);
if (level <= 0)
{
return 0;
}
reppath(file, path, time, "", "");
if (!(fp_stat = fopen(path.data(), "we")))
{
trace(1, "rtkopenstat: file open error path=%s\n", path.data());
return 0;
}
if (strlen(file) < 1025)
{
std::strncpy(file_stat, file, 1024);
file_stat[1023] = '\0';
}
else
{
trace(1, "File name is too long");
}
time_stat = time;
statlevel = level;
return 1;
}
/* close solution status file --------------------------------------------------
* close solution status file
* args : none
* return : none
*-----------------------------------------------------------------------------*/
void rtkclosestat()
{
trace(3, "rtkclosestat:\n");
if (fp_stat)
{
fclose(fp_stat);
}
fp_stat = nullptr;
file_stat[0] = '\0';
statlevel = 0;
}
/* write solution status to buffer -------------------------------------------*/
void rtkoutstat(rtk_t *rtk, char *buff __attribute__((unused)))
{
ssat_t *ssat;
double tow;
double pos[3];
double vel[3];
double acc[3];
double vela[3] = {0};
double acca[3] = {0};
double xa[3];
int i;
int j;
int week;
int est;
int nfreq;
int nf = NF_RTK(&rtk->opt);
if (statlevel <= 0 || !fp_stat)
{
return;
}
trace(3, "outsolstat:\n");
/* swap solution status file */
swapsolstat();
est = rtk->opt.mode >= PMODE_DGPS;
nfreq = est ? nf : 1;
tow = time2gpst(rtk->sol.time, &week);
/* receiver position */
if (est)
{
for (i = 0; i < 3; i++)
{
xa[i] = i < rtk->na ? rtk->xa[i] : 0.0;
}
fprintf(fp_stat, "$POS,%d,%.3f,%d,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f\n", week, tow,
rtk->sol.stat, rtk->x[0], rtk->x[1], rtk->x[2], xa[0], xa[1], xa[2]);
}
else
{
fprintf(fp_stat, "$POS,%d,%.3f,%d,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f\n", week, tow,
rtk->sol.stat, rtk->sol.rr[0], rtk->sol.rr[1], rtk->sol.rr[2],
0.0, 0.0, 0.0);
}
/* receiver velocity and acceleration */
if (est && rtk->opt.dynamics)
{
ecef2pos(rtk->sol.rr, pos);
ecef2enu(pos, rtk->x + 3, vel);
ecef2enu(pos, rtk->x + 6, acc);
if (rtk->na >= 6)
{
ecef2enu(pos, rtk->xa + 3, vela);
}
if (rtk->na >= 9)
{
ecef2enu(pos, rtk->xa + 6, acca);
}
fprintf(fp_stat, "$VELACC,%d,%.3f,%d,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f\n",
week, tow, rtk->sol.stat, vel[0], vel[1], vel[2], acc[0], acc[1], acc[2],
vela[0], vela[1], vela[2], acca[0], acca[1], acca[2]);
}
else
{
ecef2pos(rtk->sol.rr, pos);
ecef2enu(pos, rtk->sol.rr + 3, vel);
fprintf(fp_stat, "$VELACC,%d,%.3f,%d,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f\n",
week, tow, rtk->sol.stat, vel[0], vel[1], vel[2],
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
/* receiver clocks */
fprintf(fp_stat, "$CLK,%d,%.3f,%d,%d,%.3f,%.3f,%.3f,%.3f\n",
week, tow, rtk->sol.stat, 1, rtk->sol.dtr[0] * 1E9, rtk->sol.dtr[1] * 1E9,
rtk->sol.dtr[2] * 1E9, rtk->sol.dtr[3] * 1E9);
/* ionospheric parameters */
if (est && rtk->opt.ionoopt == IONOOPT_EST)
{
for (i = 0; i < MAXSAT; i++)
{
ssat = rtk->ssat + i;
if (!ssat->vs)
{
continue;
}
auto id = satno2id(i + 1);
j = II_RTK(i + 1, &rtk->opt);
xa[0] = j < rtk->na ? rtk->xa[j] : 0.0;
fprintf(fp_stat, "$ION,%d,%.3f,%d,%s,%.1f,%.1f,%.4f,%.4f\n", week, tow, rtk->sol.stat,
id.data(), ssat->azel[0] * R2D, ssat->azel[1] * R2D, rtk->x[j], xa[0]);
}
}
/* tropospheric parameters */
if (est && (rtk->opt.tropopt == TROPOPT_EST || rtk->opt.tropopt == TROPOPT_ESTG))
{
for (i = 0; i < 2; i++)
{
j = IT_RTK(i, &rtk->opt);
xa[0] = j < rtk->na ? rtk->xa[j] : 0.0;
fprintf(fp_stat, "$TROP,%d,%.3f,%d,%d,%.4f,%.4f\n", week, tow, rtk->sol.stat,
i + 1, rtk->x[j], xa[0]);
}
}
/* receiver h/w bias */
if (est && rtk->opt.glomodear == 2)
{
for (i = 0; i < nfreq; i++)
{
j = IL_RTK(i, &rtk->opt);
xa[0] = j < rtk->na ? rtk->xa[j] : 0.0;
fprintf(fp_stat, "$HWBIAS,%d,%.3f,%d,%d,%.4f,%.4f\n", week, tow, rtk->sol.stat,
i + 1, rtk->x[j], xa[0]);
}
}
if (rtk->sol.stat == SOLQ_NONE || statlevel <= 1)
{
return;
}
/* residuals and status */
for (i = 0; i < MAXSAT; i++)
{
ssat = rtk->ssat + i;
if (!ssat->vs)
{
continue;
}
auto id = satno2id(i + 1);
for (j = 0; j < nfreq; j++)
{
fprintf(fp_stat, "$SAT,%d,%.3f,%s,%d,%.1f,%.1f,%.4f,%.4f,%d,%.0f,%d,%d,%d,%d,%d,%d\n",
week, tow, id.data(), j + 1, ssat->azel[0] * R2D, ssat->azel[1] * R2D,
ssat->resp[j], ssat->resc[j], ssat->vsat[j], ssat->snr[j] * 0.25,
ssat->fix[j], ssat->slip[j] & 3, ssat->lock[j], ssat->outc[j],
ssat->slipc[j], ssat->rejc[j]);
}
}
}
/* swap solution status file -------------------------------------------------*/
void swapsolstat()
{
gtime_t time = utc2gpst(timeget());
std::string path;
if (static_cast(time2gpst(time, nullptr) / INT_SWAP_STAT) ==
static_cast(time2gpst(time_stat, nullptr) / INT_SWAP_STAT))
{
return;
}
time_stat = time;
if (!reppath(file_stat, path, time, "", ""))
{
return;
}
if (fp_stat)
{
fclose(fp_stat);
}
if (!(fp_stat = fopen(path.data(), "we")))
{
trace(2, "swapsolstat: file open error path=%s\n", path.data());
return;
}
trace(3, "swapsolstat: path=%s\n", path.data());
}
/* output solution status ----------------------------------------------------*/
void outsolstat(rtk_t *rtk)
{
ssat_t *ssat;
double tow;
double pos[3];
double vel[3];
double acc[3];
double vela[3] = {0};
double acca[3] = {0};
double xa[3];
int i;
int j;
int week;
int est;
int nfreq;
int nf = NF_RTK(&rtk->opt);
if (statlevel <= 0 || !fp_stat)
{
return;
}
trace(3, "outsolstat:\n");
/* swap solution status file */
swapsolstat();
est = rtk->opt.mode >= PMODE_DGPS;
nfreq = est ? nf : 1;
tow = time2gpst(rtk->sol.time, &week);
/* receiver position */
if (est)
{
for (i = 0; i < 3; i++)
{
xa[i] = i < rtk->na ? rtk->xa[i] : 0.0;
}
fprintf(fp_stat, "$POS,%d,%.3f,%d,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f\n", week, tow,
rtk->sol.stat, rtk->x[0], rtk->x[1], rtk->x[2], xa[0], xa[1], xa[2]);
}
else
{
fprintf(fp_stat, "$POS,%d,%.3f,%d,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f\n", week, tow,
rtk->sol.stat, rtk->sol.rr[0], rtk->sol.rr[1], rtk->sol.rr[2],
0.0, 0.0, 0.0);
}
/* receiver velocity and acceleration */
if (est && rtk->opt.dynamics)
{
ecef2pos(rtk->sol.rr, pos);
ecef2enu(pos, rtk->x + 3, vel);
ecef2enu(pos, rtk->x + 6, acc);
if (rtk->na >= 6)
{
ecef2enu(pos, rtk->xa + 3, vela);
}
if (rtk->na >= 9)
{
ecef2enu(pos, rtk->xa + 6, acca);
}
fprintf(fp_stat, "$VELACC,%d,%.3f,%d,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f\n",
week, tow, rtk->sol.stat, vel[0], vel[1], vel[2], acc[0], acc[1], acc[2],
vela[0], vela[1], vela[2], acca[0], acca[1], acca[2]);
}
else
{
ecef2pos(rtk->sol.rr, pos);
ecef2enu(pos, rtk->sol.rr + 3, vel);
fprintf(fp_stat, "$VELACC,%d,%.3f,%d,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f,%.4f,%.4f,%.4f,%.5f,%.5f,%.5f\n",
week, tow, rtk->sol.stat, vel[0], vel[1], vel[2],
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
/* receiver clocks */
fprintf(fp_stat, "$CLK,%d,%.3f,%d,%d,%.3f,%.3f,%.3f,%.3f\n",
week, tow, rtk->sol.stat, 1, rtk->sol.dtr[0] * 1E9, rtk->sol.dtr[1] * 1E9,
rtk->sol.dtr[2] * 1E9, rtk->sol.dtr[3] * 1E9);
/* ionospheric parameters */
if (est && rtk->opt.ionoopt == IONOOPT_EST)
{
for (i = 0; i < MAXSAT; i++)
{
ssat = rtk->ssat + i;
if (!ssat->vs)
{
continue;
}
auto id = satno2id(i + 1);
j = II_RTK(i + 1, &rtk->opt);
xa[0] = j < rtk->na ? rtk->xa[j] : 0.0;
fprintf(fp_stat, "$ION,%d,%.3f,%d,%s,%.1f,%.1f,%.4f,%.4f\n", week, tow, rtk->sol.stat,
id.data(), ssat->azel[0] * R2D, ssat->azel[1] * R2D, rtk->x[j], xa[0]);
}
}
/* tropospheric parameters */
if (est && (rtk->opt.tropopt == TROPOPT_EST || rtk->opt.tropopt == TROPOPT_ESTG))
{
for (i = 0; i < 2; i++)
{
j = IT_RTK(i, &rtk->opt);
xa[0] = j < rtk->na ? rtk->xa[j] : 0.0;
fprintf(fp_stat, "$TROP,%d,%.3f,%d,%d,%.4f,%.4f\n", week, tow, rtk->sol.stat,
i + 1, rtk->x[j], xa[0]);
}
}
/* receiver h/w bias */
if (est && rtk->opt.glomodear == 2)
{
for (i = 0; i < nfreq; i++)
{
j = IL_RTK(i, &rtk->opt);
xa[0] = j < rtk->na ? rtk->xa[j] : 0.0;
fprintf(fp_stat, "$HWBIAS,%d,%.3f,%d,%d,%.4f,%.4f\n", week, tow, rtk->sol.stat,
i + 1, rtk->x[j], xa[0]);
}
}
if (rtk->sol.stat == SOLQ_NONE || statlevel <= 1)
{
return;
}
/* residuals and status */
for (i = 0; i < MAXSAT; i++)
{
ssat = rtk->ssat + i;
if (!ssat->vs)
{
continue;
}
auto id = satno2id(i + 1);
for (j = 0; j < nfreq; j++)
{
fprintf(fp_stat, "$SAT,%d,%.3f,%s,%d,%.1f,%.1f,%.4f,%.4f,%d,%.0f,%d,%d,%d,%d,%d,%d\n",
week, tow, id.data(), j + 1, ssat->azel[0] * R2D, ssat->azel[1] * R2D,
ssat->resp[j], ssat->resc[j], ssat->vsat[j], ssat->snr[j] * 0.25,
ssat->fix[j], ssat->slip[j] & 3, ssat->lock[j], ssat->outc[j],
ssat->slipc[j], ssat->rejc[j]);
}
}
}
/* save error message --------------------------------------------------------*/
void errmsg(rtk_t *rtk, const char *format, ...)
{
char buff[256];
char tstr[32];
int n;
va_list ap;
time2str(rtk->sol.time, tstr, 2);
n = std::snprintf(buff, sizeof(buff), "%s: ", tstr + 11);
va_start(ap, format);
n += vsnprintf(buff + n, sizeof(buff) - n, format, ap);
va_end(ap);
n = n < MAXERRMSG - rtk->neb ? n : MAXERRMSG - rtk->neb;
memcpy(rtk->errbuf + rtk->neb, buff, n);
rtk->neb += n;
trace(2, "%s", buff);
}
/* single-differenced observable ---------------------------------------------*/
double sdobs(const obsd_t *obs, int i, int j, int f)
{
double pi = f < NFREQ ? obs[i].L[f] : obs[i].P[f - NFREQ];
double pj = f < NFREQ ? obs[j].L[f] : obs[j].P[f - NFREQ];
return pi == 0.0 || pj == 0.0 ? 0.0 : pi - pj;
}
/* single-differenced geometry-free linear combination of phase --------------*/
double gfobs_L1L2(const obsd_t *obs, int i, int j, const double *lam)
{
double pi = sdobs(obs, i, j, 0) * lam[0];
double pj = sdobs(obs, i, j, 1) * lam[1];
return pi == 0.0 || pj == 0.0 ? 0.0 : pi - pj;
}
double gfobs_L1L5(const obsd_t *obs, int i, int j, const double *lam)
{
double pi = sdobs(obs, i, j, 0) * lam[0];
double pj = sdobs(obs, i, j, 2) * lam[2];
return pi == 0.0 || pj == 0.0 ? 0.0 : pi - pj;
}
/* single-differenced measurement error variance -----------------------------*/
double varerr(int sat __attribute((unused)), int sys, double el, double bl, double dt, int f,
const prcopt_t *opt)
{
double a;
double b;
double c = opt->err[3] * bl / 1e4;
double d = SPEED_OF_LIGHT_M_S * opt->sclkstab * dt;
double fact = 1.0;
double sinel = sin(el);
int i = sys == SYS_GLO ? 1 : (sys == SYS_GAL ? 2 : 0);
int nf = NF_RTK(opt);
/* extended error model */
if (f >= nf && opt->exterr.ena[0])
{ /* code */
a = opt->exterr.cerr[i][(f - nf) * 2];
b = opt->exterr.cerr[i][1 + (f - nf) * 2];
if (sys == SYS_SBS)
{
a *= EFACT_SBS;
b *= EFACT_SBS;
}
}
else if (f < nf && opt->exterr.ena[1])
{ /* phase */
a = opt->exterr.perr[i][f * 2];
b = opt->exterr.perr[i][1 + f * 2];
if (sys == SYS_SBS)
{
a *= EFACT_SBS;
b *= EFACT_SBS;
}
}
else
{ /* normal error model */
if (f >= nf)
{
fact = opt->eratio[f - nf];
}
if (fact <= 0.0)
{
fact = opt->eratio[0];
}
fact *= sys == SYS_GLO ? EFACT_GLO : (sys == SYS_SBS ? EFACT_SBS : EFACT_GPS);
a = fact * opt->err[1];
b = fact * opt->err[2];
}
return 2.0 * (opt->ionoopt == IONOOPT_IFLC ? 3.0 : 1.0) * (a * a + b * b / sinel / sinel + c * c) + d * d;
}
/* baseline length -----------------------------------------------------------*/
double baseline(const double *ru, const double *rb, double *dr)
{
int i;
for (i = 0; i < 3; i++)
{
dr[i] = ru[i] - rb[i];
}
return norm_rtk(dr, 3);
}
/* initialize state and covariance -------------------------------------------*/
void initx_rtk(rtk_t *rtk, double xi, double var, int i)
{
int j;
rtk->x[i] = xi;
for (j = 0; j < rtk->nx; j++)
{
rtk->P[i + j * rtk->nx] = rtk->P[j + i * rtk->nx] = i == j ? var : 0.0;
}
}
/* select common satellites between rover and reference station --------------*/
int selsat(const obsd_t *obs, const double *azel, int nu, int nr,
const prcopt_t *opt, int *sat, int *iu, int *ir)
{
int i;
int j;
int k = 0;
trace(3, "selsat : nu=%d nr=%d\n", nu, nr);
for (i = 0, j = nu; i < nu && j < nu + nr; i++, j++)
{
if (obs[i].sat < obs[j].sat)
{
j--;
}
else if (obs[i].sat > obs[j].sat)
{
i--;
}
else if (azel[1 + j * 2] >= opt->elmin)
{ /* elevation at base station */
sat[k] = obs[i].sat;
iu[k] = i;
ir[k++] = j;
trace(4, "(%2d) sat=%3d iu=%2d ir=%2d\n", k - 1, obs[i].sat, i, j);
}
}
return k;
}
/* temporal update of position/velocity/acceleration -------------------------*/
void udpos(rtk_t *rtk, double tt)
{
double *F;
double *FP;
double *xp;
double pos[3];
double Q[9] = {0};
double Qv[9];
double var = 0.0;
int i;
int j;
trace(3, "udpos : tt=%.3f\n", tt);
/* fixed mode */
if (rtk->opt.mode == PMODE_FIXED)
{
for (i = 0; i < 3; i++)
{
initx_rtk(rtk, rtk->opt.ru[i], 1E-8, i);
}
return;
}
/* initialize position for first epoch */
if (norm_rtk(rtk->x, 3) <= 0.0)
{
for (i = 0; i < 3; i++)
{
initx_rtk(rtk, rtk->sol.rr[i], VAR_POS, i);
}
if (rtk->opt.dynamics)
{
for (i = 3; i < 6; i++)
{
initx_rtk(rtk, rtk->sol.rr[i], VAR_VEL, i);
}
for (i = 6; i < 9; i++)
{
initx_rtk(rtk, 1E-6, VAR_ACC, i);
}
}
}
/* static mode */
if (rtk->opt.mode == PMODE_STATIC)
{
return;
}
/* kinmatic mode without dynamics */
if (!rtk->opt.dynamics)
{
for (i = 0; i < 3; i++)
{
initx_rtk(rtk, rtk->sol.rr[i], VAR_POS, i);
}
return;
}
/* check variance of estimated position */
for (i = 0; i < 3; i++)
{
var += rtk->P[i + i * rtk->nx];
}
var /= 3.0;
if (var > VAR_POS)
{
/* reset position with large variance */
for (i = 0; i < 3; i++)
{
initx_rtk(rtk, rtk->sol.rr[i], VAR_POS, i);
}
for (i = 3; i < 6; i++)
{
initx_rtk(rtk, rtk->sol.rr[i], VAR_VEL, i);
}
for (i = 6; i < 9; i++)
{
initx_rtk(rtk, 1E-6, VAR_ACC, i);
}
trace(2, "reset rtk position due to large variance: var=%.3f\n", var);
return;
}
/* state transition of position/velocity/acceleration */
F = eye(rtk->nx);
FP = mat(rtk->nx, rtk->nx);
xp = mat(rtk->nx, 1);
for (i = 0; i < 6; i++)
{
F[i + (i + 3) * rtk->nx] = tt;
}
/* x=F*x, P=F*P*F+Q */
matmul("NN", rtk->nx, 1, rtk->nx, 1.0, F, rtk->x, 0.0, xp);
matcpy(rtk->x, xp, rtk->nx, 1);
matmul("NN", rtk->nx, rtk->nx, rtk->nx, 1.0, F, rtk->P, 0.0, FP);
matmul("NT", rtk->nx, rtk->nx, rtk->nx, 1.0, FP, F, 0.0, rtk->P);
/* process noise added to only acceleration */
Q[0] = Q[4] = std::pow(rtk->opt.prn[3], 2.0);
Q[8] = std::pow(rtk->opt.prn[4], 2.0);
ecef2pos(rtk->x, pos);
covecef(pos, Q, Qv);
for (i = 0; i < 3; i++)
{
for (j = 0; j < 3; j++)
{
rtk->P[i + 6 + (j + 6) * rtk->nx] += Qv[i + j * 3];
}
}
free(F);
free(FP);
free(xp);
}
/* temporal update of ionospheric parameters ---------------------------------*/
void udion(rtk_t *rtk, double tt, double bl, const int *sat, int ns)
{
double el;
double fact;
int i;
int j;
trace(3, "udion : tt=%.1f bl=%.0f ns=%d\n", tt, bl, ns);
for (i = 1; i <= MAXSAT; i++)
{
j = II_RTK(i, &rtk->opt);
if (rtk->x[j] != 0.0 &&
rtk->ssat[i - 1].outc[0] > GAP_RESION && rtk->ssat[i - 1].outc[1] > GAP_RESION)
{
rtk->x[j] = 0.0;
}
}
for (i = 0; i < ns; i++)
{
j = II_RTK(sat[i], &rtk->opt);
if (rtk->x[j] == 0.0)
{
initx_rtk(rtk, 1E-6, std::pow(rtk->opt.std[1] * bl / 1e4, 2.0), j);
}
else
{
/* elevation dependent factor of process noise */
el = rtk->ssat[sat[i] - 1].azel[1];
fact = cos(el);
rtk->P[j + j * rtk->nx] += std::pow(rtk->opt.prn[1] * bl / 1e4 * fact, 2.0) * tt;
}
}
}
/* temporal update of tropospheric parameters --------------------------------*/
void udtrop(rtk_t *rtk, double tt, double bl __attribute((unused)))
{
int i;
int j;
int k;
trace(3, "udtrop : tt=%.1f\n", tt);
for (i = 0; i < 2; i++)
{
j = IT_RTK(i, &rtk->opt);
if (rtk->x[j] == 0.0)
{
initx_rtk(rtk, INIT_ZWD, std::pow(rtk->opt.std[2], 2.0), j); /* initial zwd */
if (rtk->opt.tropopt >= TROPOPT_ESTG)
{
for (k = 0; k < 2; k++)
{
initx_rtk(rtk, 1e-6, VAR_GRA, ++j);
}
}
}
else
{
rtk->P[j + j * rtk->nx] += std::pow(rtk->opt.prn[2], 2.0) * tt;
if (rtk->opt.tropopt >= TROPOPT_ESTG)
{
for (k = 0; k < 2; k++)
{
rtk->P[++j * (1 + rtk->nx)] += std::pow(rtk->opt.prn[2] * 0.3, 2.0) * fabs(rtk->tt);
}
}
}
}
}
/* temporal update of receiver h/w biases ------------------------------------*/
void udrcvbias(rtk_t *rtk, double tt)
{
int i;
int j;
trace(3, "udrcvbias: tt=%.1f\n", tt);
for (i = 0; i < NFREQGLO; i++)
{
j = IL_RTK(i, &rtk->opt);
if (rtk->x[j] == 0.0)
{
initx_rtk(rtk, 1E-6, VAR_HWBIAS, j);
}
/* hold to fixed solution */
else if (rtk->nfix >= rtk->opt.minfix && rtk->sol.ratio > rtk->opt.thresar[0])
{
initx_rtk(rtk, rtk->xa[j], rtk->Pa[j + j * rtk->na], j);
}
else
{
rtk->P[j + j * rtk->nx] += std::pow(PRN_HWBIAS, 2.0) * tt;
}
}
}
/* detect cycle slip by LLI --------------------------------------------------*/
void detslp_ll(rtk_t *rtk, const obsd_t *obs, int i, int rcv)
{
unsigned int slip;
unsigned int LLI;
int f;
int sat = obs[i].sat;
trace(3, "detslp_ll: i=%d rcv=%d\n", i, rcv);
for (f = 0; f < rtk->opt.nf; f++)
{
if (obs[i].L[f] == 0.0)
{
continue;
}
/* restore previous LLI */
if (rcv == 1)
{
LLI = getbitu(&rtk->ssat[sat - 1].slip[f], 0, 2); /* rover */
}
else
{
LLI = getbitu(&rtk->ssat[sat - 1].slip[f], 2, 2); /* base */
}
/* detect slip by cycle slip flag in LLI */
if (rtk->tt >= 0.0)
{ /* forward */
if (obs[i].LLI[f] & 1)
{
errmsg(rtk, "slip detected forward (sat=%2d rcv=%d F=%d LLI=%x)\n",
sat, rcv, f + 1, obs[i].LLI[f]);
}
slip = obs[i].LLI[f];
}
else
{ /* backward */
if (LLI & 1)
{
errmsg(rtk, "slip detected backward (sat=%2d rcv=%d F=%d LLI=%x)\n",
sat, rcv, f + 1, LLI);
}
slip = LLI;
}
/* detect slip by parity unknown flag transition in LLI */
if (((LLI & 2) && !(obs[i].LLI[f] & 2)) || (!(LLI & 2) && (obs[i].LLI[f] & 2)))
{
errmsg(rtk, "slip detected half-cyc (sat=%2d rcv=%d F=%d LLI=%x->%x)\n",
sat, rcv, f + 1, LLI, obs[i].LLI[f]);
slip |= 1;
}
/* save current LLI */
if (rcv == 1)
{
setbitu(&rtk->ssat[sat - 1].slip[f], 0, 2, obs[i].LLI[f]);
}
else
{
setbitu(&rtk->ssat[sat - 1].slip[f], 2, 2, obs[i].LLI[f]);
}
/* save slip and half-cycle valid flag */
rtk->ssat[sat - 1].slip[f] |= static_cast(slip);
rtk->ssat[sat - 1].half[f] = (obs[i].LLI[f] & 2) ? 0 : 1;
}
}
/* detect cycle slip by L1-L2 geometry free phase jump -----------------------*/
void detslp_gf_L1L2(rtk_t *rtk, const obsd_t *obs, int i, int j,
const nav_t *nav)
{
int sat = obs[i].sat;
double g0;
double g1;
trace(3, "detslp_gf_L1L2: i=%d j=%d\n", i, j);
if (rtk->opt.nf <= 1 || (g1 = gfobs_L1L2(obs, i, j, nav->lam[sat - 1])) == 0.0)
{
return;
}
g0 = rtk->ssat[sat - 1].gf;
rtk->ssat[sat - 1].gf = g1;
if (g0 != 0.0 && fabs(g1 - g0) > rtk->opt.thresslip)
{
rtk->ssat[sat - 1].slip[0] |= 1;
rtk->ssat[sat - 1].slip[1] |= 1;
errmsg(rtk, "slip detected (sat=%2d GF_L1_L2=%.3f %.3f)\n", sat, g0, g1);
}
}
/* detect cycle slip by L1-L5 geometry free phase jump -----------------------*/
void detslp_gf_L1L5(rtk_t *rtk, const obsd_t *obs, int i, int j,
const nav_t *nav)
{
int sat = obs[i].sat;
double g0;
double g1;
trace(3, "detslp_gf_L1L5: i=%d j=%d\n", i, j);
if (rtk->opt.nf <= 2 || (g1 = gfobs_L1L5(obs, i, j, nav->lam[sat - 1])) == 0.0)
{
return;
}
g0 = rtk->ssat[sat - 1].gf2;
rtk->ssat[sat - 1].gf2 = g1;
if (g0 != 0.0 && fabs(g1 - g0) > rtk->opt.thresslip)
{
rtk->ssat[sat - 1].slip[0] |= 1;
rtk->ssat[sat - 1].slip[2] |= 1;
errmsg(rtk, "slip detected (sat=%2d GF_L1_L5=%.3f %.3f)\n", sat, g0, g1);
}
}
/* detect cycle slip by doppler and phase difference -------------------------*/
void detslp_dop(rtk_t *rtk __attribute__((unused)), const obsd_t *obs __attribute__((unused)), int i __attribute__((unused)), int rcv __attribute__((unused)),
const nav_t *nav __attribute__((unused)))
{
/* detection with doppler disabled because of clock-jump issue (v.2.3.0) */
#if 0
int f, sat = obs[i].sat;
double tt, dph, dpt, lam, thres;
trace(3, "detslp_dop: i=%d rcv=%d\n", i, rcv);
for (f = 0; f < rtk->opt.nf; f++)
{
if (obs[i].L[f] == 0.0 || obs[i].D[f] == 0.0 || rtk->ph[rcv - 1][sat - 1][f] == 0.0)
{
continue;
}
if (fabs(tt = timediff(obs[i].time, rtk->pt[rcv - 1][sat - 1][f])) < DTTOL) continue;
if ((lam = nav->lam[sat - 1][f]) <= 0.0) continue;
/* cycle slip threshold (cycle) */
thres = MAXACC * tt * tt / 2.0 / lam + rtk->opt.err[4] * fabs(tt) * 4.0;
/* phase difference and doppler x time (cycle) */
dph = obs[i].L[f] - rtk->ph[rcv - 1][sat - 1][f];
dpt = -obs[i].D[f] * tt;
if (fabs(dph - dpt) <= thres) continue;
rtk->slip[sat - 1][f] | = 1;
errmsg(rtk, "slip detected (sat=%2d rcv=%d L%d=%.3f %.3f thres=%.3f)\n",
sat, rcv, f + 1, dph, dpt, thres);
}
#endif
}
/* temporal update of phase biases -------------------------------------------*/
void udbias(rtk_t *rtk, double tt, const obsd_t *obs, const int *sat,
const int *iu, const int *ir, int ns, const nav_t *nav)
{
double cp;
double pr;
double cp1;
double cp2;
double pr1;
double pr2;
double *bias;
double offset;
double lami;
double lam1;
double lam2;
double C1;
double C2;
int i;
int j;
int f;
int slip;
int reset;
int nf = NF_RTK(&rtk->opt);
trace(3, "udbias : tt=%.1f ns=%d\n", tt, ns);
for (i = 0; i < ns; i++)
{
/* detect cycle slip by LLI */
for (f = 0; f < rtk->opt.nf; f++)
{
rtk->ssat[sat[i] - 1].slip[f] &= 0xFC;
}
detslp_ll(rtk, obs, iu[i], 1);
detslp_ll(rtk, obs, ir[i], 2);
/* detect cycle slip by geometry-free phase jump */
detslp_gf_L1L2(rtk, obs, iu[i], ir[i], nav);
detslp_gf_L1L5(rtk, obs, iu[i], ir[i], nav);
/* detect cycle slip by doppler and phase difference */
detslp_dop(rtk, obs, iu[i], 1, nav);
detslp_dop(rtk, obs, ir[i], 2, nav);
/* update half-cycle valid flag */
for (f = 0; f < nf; f++)
{
rtk->ssat[sat[i] - 1].half[f] =
!((obs[iu[i]].LLI[f] & 2) || (obs[ir[i]].LLI[f] & 2));
}
}
for (f = 0; f < nf; f++)
{
/* reset phase-bias if instantaneous AR or expire obs outage counter */
for (i = 1; i <= MAXSAT; i++)
{
reset = ++rtk->ssat[i - 1].outc[f] > static_cast(rtk->opt.maxout);
if (rtk->opt.modear == ARMODE_INST && rtk->x[IB_RTK(i, f, &rtk->opt)] != 0.0)
{
initx_rtk(rtk, 0.0, 0.0, IB_RTK(i, f, &rtk->opt));
}
else if (reset && rtk->x[IB_RTK(i, f, &rtk->opt)] != 0.0)
{
initx_rtk(rtk, 0.0, 0.0, IB_RTK(i, f, &rtk->opt));
trace(3, "udbias : obs outage counter overflow (sat=%3d L%d n=%d)\n",
i, f + 1, rtk->ssat[i - 1].outc[f]);
}
if (rtk->opt.modear != ARMODE_INST && reset)
{
rtk->ssat[i - 1].lock[f] = -rtk->opt.minlock;
}
}
/* reset phase-bias if detecting cycle slip */
for (i = 0; i < ns; i++)
{
j = IB_RTK(sat[i], f, &rtk->opt);
rtk->P[j + j * rtk->nx] += rtk->opt.prn[0] * rtk->opt.prn[0] * tt;
slip = rtk->ssat[sat[i] - 1].slip[f];
if (rtk->opt.ionoopt == IONOOPT_IFLC)
{
slip |= rtk->ssat[sat[i] - 1].slip[1];
}
if (rtk->opt.modear == ARMODE_INST || !(slip & 1))
{
continue;
}
rtk->x[j] = 0.0;
rtk->ssat[sat[i] - 1].lock[f] = -rtk->opt.minlock;
}
bias = zeros(ns, 1);
/* estimate approximate phase-bias by phase - code */
for (i = j = 0, offset = 0.0; i < ns; i++)
{
if (rtk->opt.ionoopt != IONOOPT_IFLC)
{
cp = sdobs(obs, iu[i], ir[i], f); /* cycle */
pr = sdobs(obs, iu[i], ir[i], f + NFREQ);
lami = nav->lam[sat[i] - 1][f];
if (cp == 0.0 || pr == 0.0 || lami <= 0.0)
{
continue;
}
bias[i] = cp - pr / lami;
}
else
{
cp1 = sdobs(obs, iu[i], ir[i], 0);
cp2 = sdobs(obs, iu[i], ir[i], 1);
pr1 = sdobs(obs, iu[i], ir[i], NFREQ);
pr2 = sdobs(obs, iu[i], ir[i], NFREQ + 1);
lam1 = nav->lam[sat[i] - 1][0];
lam2 = nav->lam[sat[i] - 1][1];
if (cp1 == 0.0 || cp2 == 0.0 || pr1 == 0.0 || pr2 == 0.0 || lam1 <= 0.0 || lam2 <= 0.0)
{
continue;
}
C1 = std::pow(lam2, 2.0) / (std::pow(lam2, 2.0) - std::pow(lam1, 2.0));
C2 = -std::pow(lam1, 2.0) / (std::pow(lam2, 2.0) - std::pow(lam1, 2.0));
bias[i] = (C1 * lam1 * cp1 + C2 * lam2 * cp2) - (C1 * pr1 + C2 * pr2);
}
if (rtk->x[IB_RTK(sat[i], f, &rtk->opt)] != 0.0)
{
offset += bias[i] - rtk->x[IB_RTK(sat[i], f, &rtk->opt)];
j++;
}
}
/* correct phase-bias offset to enssure phase-code coherency */
if (j > 0)
{
for (i = 1; i <= MAXSAT; i++)
{
if (rtk->x[IB_RTK(i, f, &rtk->opt)] != 0.0)
{
rtk->x[IB_RTK(i, f, &rtk->opt)] += offset / j;
}
}
}
/* set initial states of phase-bias */
for (i = 0; i < ns; i++)
{
if (bias[i] == 0.0 || rtk->x[IB_RTK(sat[i], f, &rtk->opt)] != 0.0)
{
continue;
}
initx_rtk(rtk, bias[i], std::pow(rtk->opt.std[0], 2.0), IB_RTK(sat[i], f, &rtk->opt));
}
free(bias);
}
}
/* temporal update of states --------------------------------------------------*/
void udstate(rtk_t *rtk, const obsd_t *obs, const int *sat,
const int *iu, const int *ir, int ns, const nav_t *nav)
{
double tt = fabs(rtk->tt);
double bl = 0.0;
double dr[3];
trace(3, "udstate : ns=%d\n", ns);
/* temporal update of position/velocity/acceleration */
udpos(rtk, tt);
/* temporal update of ionospheric parameters */
if (rtk->opt.ionoopt >= IONOOPT_EST)
{
bl = baseline(rtk->x, rtk->rb, dr);
udion(rtk, tt, bl, sat, ns);
}
/* temporal update of tropospheric parameters */
if (rtk->opt.tropopt >= TROPOPT_EST)
{
udtrop(rtk, tt, bl);
}
/* temporal update of eceiver h/w bias */
if (rtk->opt.glomodear == 2 && (rtk->opt.navsys & SYS_GLO))
{
udrcvbias(rtk, tt);
}
/* temporal update of phase-bias */
if (rtk->opt.mode > PMODE_DGPS)
{
udbias(rtk, tt, obs, sat, iu, ir, ns, nav);
}
}
/* undifferenced phase/code residual for satellite ---------------------------*/
void zdres_sat(int base, double r, const obsd_t *obs, const nav_t *nav,
const double *azel, const double *dant,
const prcopt_t *opt, double *y)
{
const double *lam = nav->lam[obs->sat - 1];
double f1;
double f2;
double C1;
double C2;
double dant_if;
int i;
int nf = NF_RTK(opt);
if (opt->ionoopt == IONOOPT_IFLC)
{ /* iono-free linear combination */
if (lam[0] == 0.0 || lam[1] == 0.0)
{
return;
}
if (testsnr(base, 0, azel[1], obs->SNR[0] * 0.25, &opt->snrmask) ||
testsnr(base, 1, azel[1], obs->SNR[1] * 0.25, &opt->snrmask))
{
return;
}
f1 = SPEED_OF_LIGHT_M_S / lam[0];
f2 = SPEED_OF_LIGHT_M_S / lam[1];
C1 = std::pow(f1, 2.0) / (std::pow(f1, 2.0) - std::pow(f2, 2.0));
C2 = -std::pow(f2, 2.0) / (std::pow(f1, 2.0) - std::pow(f2, 2.0));
dant_if = C1 * dant[0] + C2 * dant[1];
if (obs->L[0] != 0.0 && obs->L[1] != 0.0)
{
y[0] = C1 * obs->L[0] * lam[0] + C2 * obs->L[1] * lam[1] - r - dant_if;
}
if (obs->P[0] != 0.0 && obs->P[1] != 0.0)
{
y[1] = C1 * obs->P[0] + C2 * obs->P[1] - r - dant_if;
}
}
else
{
for (i = 0; i < nf; i++)
{
if (lam[i] == 0.0)
{
continue;
}
/* check snr mask */
if (testsnr(base, i, azel[1], obs->SNR[i] * 0.25, &opt->snrmask))
{
continue;
}
/* residuals = observable - pseudorange */
if (obs->L[i] != 0.0)
{
y[i] = obs->L[i] * lam[i] - r - dant[i];
}
if (obs->P[i] != 0.0)
{
y[i + nf] = obs->P[i] - r - dant[i];
}
}
}
}
/* undifferenced phase/code residuals ----------------------------------------*/
int zdres(int base, const obsd_t *obs, int n, const double *rs,
const double *dts, const int *svh, const nav_t *nav,
const double *rr, const prcopt_t *opt, int index, double *y,
double *e, double *azel)
{
double r;
double rr_[3];
double pos[3];
double dant[NFREQ] = {0};
double disp[3];
double zhd;
double zazel[] = {0.0, 90.0 * D2R};
int i;
int nf = NF_RTK(opt);
trace(3, "zdres : n=%d\n", n);
for (i = 0; i < n * nf * 2; i++)
{
y[i] = 0.0;
}
if (norm_rtk(rr, 3) <= 0.0)
{
return 0; /* no receiver position */
}
for (i = 0; i < 3; i++)
{
rr_[i] = rr[i];
}
/* earth tide correction */
if (opt->tidecorr)
{
tidedisp(gpst2utc(obs[0].time), rr_, opt->tidecorr, &nav->erp,
opt->odisp[base], disp);
for (i = 0; i < 3; i++)
{
rr_[i] += disp[i];
}
}
ecef2pos(rr_, pos);
for (i = 0; i < n; i++)
{
/* compute geometric-range and azimuth/elevation angle */
if ((r = geodist(rs + i * 6, rr_, e + i * 3)) <= 0.0)
{
continue;
}
if (satazel(pos, e + i * 3, azel + i * 2) < opt->elmin)
{
continue;
}
/* excluded satellite? */
if (satexclude(obs[i].sat, svh[i], opt))
{
continue;
}
/* satellite clock-bias */
r += -SPEED_OF_LIGHT_M_S * dts[i * 2];
/* troposphere delay model (hydrostatic) */
zhd = tropmodel(obs[0].time, pos, zazel, 0.0);
r += tropmapf(obs[i].time, pos, azel + i * 2, nullptr) * zhd;
/* receiver antenna phase center correction */
antmodel(opt->pcvr + index, opt->antdel[index], azel + i * 2, opt->posopt[1],
dant);
/* undifferenced phase/code residual for satellite */
zdres_sat(base, r, obs + i, nav, azel + i * 2, dant, opt, y + i * nf * 2);
}
trace(4, "rr_=%.3f %.3f %.3f\n", rr_[0], rr_[1], rr_[2]);
trace(4, "pos=%.9f %.9f %.3f\n", pos[0] * R2D, pos[1] * R2D, pos[2]);
for (i = 0; i < n; i++)
{
trace(4, "sat=%2d %13.3f %13.3f %13.3f %13.10f %6.1f %5.1f\n",
obs[i].sat, rs[i * 6], rs[1 + i * 6], rs[2 + i * 6], dts[i * 2], azel[i * 2] * R2D,
azel[1 + i * 2] * R2D);
}
trace(4, "y=\n");
tracemat(4, y, nf * 2, n, 13, 3);
return 1;
}
/* test valid observation data -----------------------------------------------*/
int validobs(int i, int j, int f, int nf, const double *y)
{
/* if no phase observable, psudorange is also unusable */
return y[f + i * nf * 2] != 0.0 && y[f + j * nf * 2] != 0.0 &&
(f < nf || (y[f - nf + i * nf * 2] != 0.0 && y[f - nf + j * nf * 2] != 0.0));
}
/* double-differenced measurement error covariance ---------------------------*/
void ddcov(const int *nb, int n, const double *Ri, const double *Rj,
int nv, double *R)
{
int i;
int j;
int k = 0;
int b;
trace(3, "ddcov : n=%d\n", n);
for (i = 0; i < nv * nv; i++)
{
R[i] = 0.0;
}
for (b = 0; b < n; k += nb[b++])
{
for (i = 0; i < nb[b]; i++)
{
for (j = 0; j < nb[b]; j++)
{
R[k + i + (k + j) * nv] = Ri[k + i] + (i == j ? Rj[k + i] : 0.0);
}
}
}
trace(5, "R=\n");
tracemat(5, R, nv, nv, 8, 6);
}
/* baseline length constraint ------------------------------------------------*/
int constbl(rtk_t *rtk, const double *x, const double *P, double *v,
double *H, double *Ri, double *Rj, int index)
{
const double thres = 0.1; /* threshold for nonliearity (v.2.3.0) */
double xb[3];
double b[3];
double bb;
double var = 0.0;
int i;
trace(3, "constbl : \n");
/* no constraint */
if (rtk->opt.baseline[0] <= 0.0)
{
return 0;
}
/* time-adjusted baseline vector and length */
for (i = 0; i < 3; i++)
{
xb[i] = rtk->rb[i] + rtk->rb[i + 3] * rtk->sol.age;
b[i] = x[i] - xb[i];
}
bb = norm_rtk(b, 3);
/* approximate variance of solution */
if (P)
{
for (i = 0; i < 3; i++)
{
var += P[i + i * rtk->nx];
}
var /= 3.0;
}
/* check nonlinearity */
if (var > thres * thres * bb * bb)
{
trace(3, "constbl : equation nonlinear (bb=%.3f var=%.3f)\n", bb, var);
return 0;
}
/* constraint to baseline length */
v[index] = rtk->opt.baseline[0] - bb;
if (H)
{
for (i = 0; i < 3; i++)
{
H[i + index * rtk->nx] = b[i] / bb;
}
}
Ri[index] = 0.0;
Rj[index] = std::pow(rtk->opt.baseline[1], 2.0);
trace(4, "baseline len v=%13.3f R=%8.6f %8.6f\n", v[index], Ri[index], Rj[index]);
return 1;
}
/* precise tropspheric model -------------------------------------------------*/
double prectrop(gtime_t time, const double *pos, int r,
const double *azel, const prcopt_t *opt, const double *x,
double *dtdx)
{
double m_w = 0.0;
double cotz;
double grad_n;
double grad_e;
int i = IT_RTK(r, opt);
/* wet mapping function */
tropmapf(time, pos, azel, &m_w);
if (opt->tropopt >= TROPOPT_ESTG && azel[1] > 0.0)
{
/* m_w=m_0+m_0*cot(el)*(Gn*cos(az)+Ge*sin(az)): ref [6] */
cotz = 1.0 / tan(azel[1]);
grad_n = m_w * cotz * cos(azel[0]);
grad_e = m_w * cotz * sin(azel[0]);
m_w += grad_n * x[i + 1] + grad_e * x[i + 2];
dtdx[1] = grad_n * x[i];
dtdx[2] = grad_e * x[i];
}
else
{
dtdx[1] = dtdx[2] = 0.0;
}
dtdx[0] = m_w;
return m_w * x[i];
}
/* glonass inter-channel bias correction -------------------------------------*/
double gloicbcorr(int sat1 __attribute((unused)), int sat2 __attribute((unused)), const prcopt_t *opt, double lam1,
double lam2, int f)
{
double dfreq;
if (f >= NFREQGLO || f >= opt->nf || !opt->exterr.ena[2])
{
return 0.0;
}
dfreq = (SPEED_OF_LIGHT_M_S / lam1 - SPEED_OF_LIGHT_M_S / lam2) / (f == 0 ? DFRQ1_GLO : DFRQ2_GLO);
return opt->exterr.gloicb[f] * 0.01 * dfreq; /* (m) */
}
/* test navi system (m=0:gps/qzs/sbs,1:glo,2:gal,3:bds) ----------------------*/
int test_sys(int sys, int m)
{
switch (sys)
{
case SYS_GPS:
return m == 0;
case SYS_QZS:
return m == 0;
case SYS_SBS:
return m == 0;
case SYS_GLO:
return m == 1;
case SYS_GAL:
return m == 2;
case SYS_BDS:
return m == 3;
}
return 0;
}
/* double-differenced phase/code residuals -----------------------------------*/
int ddres(rtk_t *rtk, const nav_t *nav, double dt, const double *x,
const double *P, const int *sat, double *y, const double *e,
double *azel, const int *iu, const int *ir, int ns, double *v,
double *H, double *R, int *vflg)
{
prcopt_t *opt = &rtk->opt;
double bl;
double dr[3];
double posu[3];
double posr[3];
double didxi = 0.0;
double didxj = 0.0;
double *im;
double *tropr;
double *tropu;
double *dtdxr;
double *dtdxu;
double *Ri;
double *Rj;
double lami;
double lamj;
double fi;
double fj;
double df;
double *Hi = nullptr;
int i;
int j;
int k;
int m;
int f;
int ff;
int nv = 0;
int nb[NFREQ * 4 * 2 + 2] = {0};
int b = 0;
int sysi;
int sysj;
int nf = NF_RTK(opt);
trace(3, "ddres : dt=%.1f nx=%d ns=%d\n", dt, rtk->nx, ns);
bl = baseline(x, rtk->rb, dr);
ecef2pos(x, posu);
ecef2pos(rtk->rb, posr);
Ri = mat(ns * nf * 2 + 2, 1);
Rj = mat(ns * nf * 2 + 2, 1);
im = mat(ns, 1);
tropu = mat(ns, 1);
tropr = mat(ns, 1);
dtdxu = mat(ns, 3);
dtdxr = mat(ns, 3);
for (i = 0; i < MAXSAT; i++)
{
for (j = 0; j < NFREQ; j++)
{
rtk->ssat[i].resp[j] = rtk->ssat[i].resc[j] = 0.0;
}
}
/* compute factors of ionospheric and tropospheric delay */
for (i = 0; i < ns; i++)
{
if (opt->ionoopt >= IONOOPT_EST)
{
im[i] = (ionmapf(posu, azel + iu[i] * 2) + ionmapf(posr, azel + ir[i] * 2)) / 2.0;
}
if (opt->tropopt >= TROPOPT_EST)
{
tropu[i] = prectrop(rtk->sol.time, posu, 0, azel + iu[i] * 2, opt, x, dtdxu + i * 3);
tropr[i] = prectrop(rtk->sol.time, posr, 1, azel + ir[i] * 2, opt, x, dtdxr + i * 3);
}
}
for (m = 0; m < 4; m++)
{ /* m=0:gps/qzs/sbs, 1:glo, 2:gal, 3:bds */
for (f = opt->mode > PMODE_DGPS ? 0 : nf; f < nf * 2; f++)
{
/* search reference satellite with highest elevation */
for (i = -1, j = 0; j < ns; j++)
{
sysi = rtk->ssat[sat[j] - 1].sys;
if (!test_sys(sysi, m))
{
continue;
}
if (!validobs(iu[j], ir[j], f, nf, y))
{
continue;
}
if (i < 0 || azel[1 + iu[j] * 2] >= azel[1 + iu[i] * 2])
{
i = j;
}
}
if (i < 0)
{
continue;
}
/* make double difference */
for (j = 0; j < ns; j++)
{
if (i == j)
{
continue;
}
sysi = rtk->ssat[sat[i] - 1].sys;
sysj = rtk->ssat[sat[j] - 1].sys;
if (!test_sys(sysj, m))
{
continue;
}
if (!validobs(iu[j], ir[j], f, nf, y))
{
continue;
}
ff = f % nf;
lami = nav->lam[sat[i] - 1][ff];
lamj = nav->lam[sat[j] - 1][ff];
if (lami <= 0.0 || lamj <= 0.0)
{
continue;
}
if (H)
{
Hi = H + nv * rtk->nx;
for (k = 0; k < rtk->nx; k++)
{
Hi[k] = 0.0;
}
}
/* double-differenced residual */
v[nv] = (y[f + iu[i] * nf * 2] - y[f + ir[i] * nf * 2]) -
(y[f + iu[j] * nf * 2] - y[f + ir[j] * nf * 2]);
/* partial derivatives by rover position */
if (H)
{
for (k = 0; k < 3; k++)
{
Hi[k] = -e[k + iu[i] * 3] + e[k + iu[j] * 3];
}
}
/* double-differenced ionospheric delay term */
if (opt->ionoopt == IONOOPT_EST)
{
fi = lami / LAM_CARR[0];
fj = lamj / LAM_CARR[0];
didxi = (f < nf ? -1.0 : 1.0) * fi * fi * im[i];
didxj = (f < nf ? -1.0 : 1.0) * fj * fj * im[j];
v[nv] -= didxi * x[II_RTK(sat[i], opt)] - didxj * x[II_RTK(sat[j], opt)];
if (H)
{
Hi[II_RTK(sat[i], opt)] = didxi;
Hi[II_RTK(sat[j], opt)] = -didxj;
}
}
/* double-differenced tropospheric delay term */
if (opt->tropopt == TROPOPT_EST || opt->tropopt == TROPOPT_ESTG)
{
v[nv] -= (tropu[i] - tropu[j]) - (tropr[i] - tropr[j]);
for (k = 0; k < (opt->tropopt < TROPOPT_ESTG ? 1 : 3); k++)
{
if (!H)
{
continue;
}
Hi[IT_RTK(0, opt) + k] = (dtdxu[k + i * 3] - dtdxu[k + j * 3]);
Hi[IT_RTK(1, opt) + k] = -(dtdxr[k + i * 3] - dtdxr[k + j * 3]);
}
}
/* double-differenced phase-bias term */
if (f < nf)
{
if (opt->ionoopt != IONOOPT_IFLC)
{
v[nv] -= lami * x[IB_RTK(sat[i], f, opt)] - lamj * x[IB_RTK(sat[j], f, opt)];
if (H)
{
Hi[IB_RTK(sat[i], f, opt)] = lami;
Hi[IB_RTK(sat[j], f, opt)] = -lamj;
}
}
else
{
v[nv] -= x[IB_RTK(sat[i], f, opt)] - x[IB_RTK(sat[j], f, opt)];
if (H)
{
Hi[IB_RTK(sat[i], f, opt)] = 1.0;
Hi[IB_RTK(sat[j], f, opt)] = -1.0;
}
}
}
/* glonass receiver h/w bias term */
if (rtk->opt.glomodear == 2 && sysi == SYS_GLO && sysj == SYS_GLO && ff < NFREQGLO)
{
df = (SPEED_OF_LIGHT_M_S / lami - SPEED_OF_LIGHT_M_S / lamj) / 1E6; /* freq-difference (MHz) */
v[nv] -= df * x[IL_RTK(ff, opt)];
if (H)
{
Hi[IL_RTK(ff, opt)] = df;
}
}
/* glonass interchannel bias correction */
else if (sysi == SYS_GLO && sysj == SYS_GLO)
{
v[nv] -= gloicbcorr(sat[i], sat[j], &rtk->opt, lami, lamj, f);
}
if (f < nf)
{
rtk->ssat[sat[j] - 1].resc[f] = v[nv];
}
else
{
rtk->ssat[sat[j] - 1].resp[f - nf] = v[nv];
}
/* test innovation */
if (opt->maxinno > 0.0 && fabs(v[nv]) > opt->maxinno)
{
if (f < nf)
{
rtk->ssat[sat[i] - 1].rejc[f]++;
rtk->ssat[sat[j] - 1].rejc[f]++;
}
errmsg(rtk, "outlier rejected (sat=%3d-%3d %s%d v=%.3f)\n",
sat[i], sat[j], f < nf ? "L" : "P", f % nf + 1, v[nv]);
continue;
}
/* single-differenced measurement error variances */
Ri[nv] = varerr(sat[i], sysi, azel[1 + iu[i] * 2], bl, dt, f, opt);
Rj[nv] = varerr(sat[j], sysj, azel[1 + iu[j] * 2], bl, dt, f, opt);
/* set valid data flags */
if (opt->mode > PMODE_DGPS)
{
if (f < nf)
{
rtk->ssat[sat[i] - 1].vsat[f] = rtk->ssat[sat[j] - 1].vsat[f] = 1;
}
}
else
{
rtk->ssat[sat[i] - 1].vsat[f - nf] = rtk->ssat[sat[j] - 1].vsat[f - nf] = 1;
}
trace(4, "sat=%3d-%3d %s%d v=%13.3f R=%8.6f %8.6f\n", sat[i],
sat[j], f < nf ? "L" : "P", f % nf + 1, v[nv], Ri[nv], Rj[nv]);
vflg[nv++] = (sat[i] << 16) | (sat[j] << 8) | ((f < nf ? 0 : 1) << 4) | (f % nf);
nb[b]++;
}
#if 0 /* residuals referenced to reference satellite (2.4.2 p11) */
/* restore single-differenced residuals assuming sum equal zero */
if (f < nf)
{
for (j = 0, s = 0.0; j < MAXSAT; j++) s += rtk->ssat[j].resc[f];
s /= nb[b] + 1;
for (j = 0; j < MAXSAT; j++)
{
if (j == sat[i] - 1 || rtk->ssat[j].resc[f] != 0.0) rtk->ssat[j].resc[f] -= s;
}
}
else
{
for (j = 0, s = 0.0; j < MAXSAT; j++) s += rtk->ssat[j].resp[f - nf];
s /= nb[b] + 1;
for (j = 0; j < MAXSAT; j++)
{
if (j == sat[i] - 1 || rtk->ssat[j].resp[f - nf] != 0.0)
rtk->ssat[j].resp[f - nf] -= s;
}
}
#endif
b++;
}
}
/* end of system loop */
/* baseline length constraint for moving baseline */
if (opt->mode == PMODE_MOVEB && constbl(rtk, x, P, v, H, Ri, Rj, nv))
{
vflg[nv++] = 3 << 4;
nb[b++]++;
}
if (H)
{
trace(5, "H=\n");
tracemat(5, H, rtk->nx, nv, 7, 4);
}
/* double-differenced measurement error covariance */
ddcov(nb, b, Ri, Rj, nv, R);
free(Ri);
free(Rj);
free(im);
free(tropu);
free(tropr);
free(dtdxu);
free(dtdxr);
return nv;
}
/* time-interpolation of residuals (for post-mission) ------------------------*/
double intpres(gtime_t time, const obsd_t *obs, int n, const nav_t *nav,
rtk_t *rtk, double *y)
{
static obsd_t obsb[MAXOBS];
static double yb[MAXOBS * NFREQ * 2];
static double rs[MAXOBS * 6];
static double dts[MAXOBS * 2];
static double var[MAXOBS];
static double e[MAXOBS * 3];
static double azel[MAXOBS * 2];
static int nb = 0;
static int svh[MAXOBS * 2];
prcopt_t *opt = &rtk->opt;
double tt = timediff(time, obs[0].time);
double ttb;
double *p;
double *q;
int i;
int j;
int k;
int nf = NF_RTK(opt);
trace(3, "intpres : n=%d tt=%.1f\n", n, tt);
if (nb == 0 || fabs(tt) < DTTOL)
{
nb = n;
for (i = 0; i < n; i++)
{
obsb[i] = obs[i];
}
return tt;
}
ttb = timediff(time, obsb[0].time);
if (fabs(ttb) > opt->maxtdiff * 2.0 || ttb == tt)
{
return tt;
}
satposs(time, obsb, nb, nav, opt->sateph, rs, dts, var, svh);
if (!zdres(1, obsb, nb, rs, dts, svh, nav, rtk->rb, opt, 1, yb, e, azel))
{
return tt;
}
for (i = 0; i < n; i++)
{
for (j = 0; j < nb; j++)
{
if (obsb[j].sat == obs[i].sat)
{
break;
}
}
if (j >= nb)
{
continue;
}
for (k = 0, p = y + i * nf * 2, q = yb + j * nf * 2; k < nf * 2; k++, p++, q++)
{
if (*p == 0.0 || *q == 0.0)
{
*p = 0.0;
}
else
{
*p = (ttb * (*p) - tt * (*q)) / (ttb - tt);
}
}
}
return fabs(ttb) > fabs(tt) ? ttb : tt;
}
/* single to double-difference transformation matrix (D') --------------------*/
int ddmat(rtk_t *rtk, double *D)
{
int i;
int j;
int k;
int m;
int f;
int nb = 0;
int nx = rtk->nx;
int na = rtk->na;
int nf = NF_RTK(&rtk->opt);
int nofix;
trace(3, "ddmat :\n");
for (i = 0; i < MAXSAT; i++)
{
for (j = 0; j < NFREQ; j++)
{
rtk->ssat[i].fix[j] = 0;
}
}
for (i = 0; i < na; i++)
{
D[i + i * nx] = 1.0;
}
for (m = 0; m < 4; m++)
{ /* m=0:gps/qzs/sbs, 1:glo, 2:gal, 3:bds */
nofix = (m == 1 && rtk->opt.glomodear == 0) || (m == 3 && rtk->opt.bdsmodear == 0);
for (f = 0, k = na; f < nf; f++, k += MAXSAT)
{
if (i < k + MAXSAT)
{
for (i = k; i < k + MAXSAT; i++)
{
if (rtk->x[i] == 0.0 || !test_sys(rtk->ssat[i - k].sys, m) ||
!rtk->ssat[i - k].vsat[f] || !rtk->ssat[i - k].half[f])
{
continue;
}
if (rtk->ssat[i - k].lock[f] > 0 && !(rtk->ssat[i - k].slip[f] & 2) &&
rtk->ssat[i - k].azel[1] >= rtk->opt.elmaskar && !nofix)
{
rtk->ssat[i - k].fix[f] = 2; /* fix */
break;
}
rtk->ssat[i - k].fix[f] = 1;
}
for (j = k; j < k + MAXSAT; j++)
{
if (i == j || rtk->x[j] == 0.0 || !test_sys(rtk->ssat[j - k].sys, m) ||
!rtk->ssat[j - k].vsat[f])
{
continue;
}
if (rtk->ssat[j - k].lock[f] > 0 && !(rtk->ssat[j - k].slip[f] & 2) &&
rtk->ssat[i - k].vsat[f] &&
rtk->ssat[j - k].azel[1] >= rtk->opt.elmaskar && !nofix)
{
D[i + (na + nb) * nx] = 1.0;
D[j + (na + nb) * nx] = -1.0;
nb++;
rtk->ssat[j - k].fix[f] = 2; /* fix */
}
else
{
rtk->ssat[j - k].fix[f] = 1;
}
}
}
}
}
trace(5, "D=\n");
tracemat(5, D, nx, na + nb, 2, 0);
return nb;
}
/* restore single-differenced ambiguity --------------------------------------*/
void restamb(rtk_t *rtk, const double *bias, int nb __attribute((unused)), double *xa)
{
int i;
int n;
int m;
int f;
std::vector index(MAXSAT);
int nv = 0;
int nf = NF_RTK(&rtk->opt);
trace(3, "restamb :\n");
for (i = 0; i < rtk->nx; i++)
{
xa[i] = rtk->x[i];
}
for (i = 0; i < rtk->na; i++)
{
xa[i] = rtk->xa[i];
}
for (m = 0; m < 4; m++)
{
for (f = 0; f < nf; f++)
{
for (n = i = 0; i < MAXSAT; i++)
{
if (!test_sys(rtk->ssat[i].sys, m) || rtk->ssat[i].fix[f] != 2)
{
continue;
}
index[n++] = IB_RTK(i + 1, f, &rtk->opt);
}
if (n < 2)
{
continue;
}
xa[index[0]] = rtk->x[index[0]];
for (i = 1; i < n; i++)
{
xa[index[i]] = xa[index[0]] - bias[nv++];
}
}
}
}
/* hold integer ambiguity ----------------------------------------------------*/
void holdamb(rtk_t *rtk, const double *xa)
{
double *v;
double *H;
double *R;
int i;
int n;
int m;
int f;
int info;
std::vector index(MAXSAT);
int nb = rtk->nx - rtk->na;
int nv = 0;
int nf = NF_RTK(&rtk->opt);
trace(3, "holdamb :\n");
v = mat(nb, 1);
H = zeros(nb, rtk->nx);
for (m = 0; m < 4; m++)
{
for (f = 0; f < nf; f++)
{
for (n = i = 0; i < MAXSAT; i++)
{
if (!test_sys(rtk->ssat[i].sys, m) || rtk->ssat[i].fix[f] != 2 ||
rtk->ssat[i].azel[1] < rtk->opt.elmaskhold)
{
continue;
}
index[n++] = IB_RTK(i + 1, f, &rtk->opt);
rtk->ssat[i].fix[f] = 3; /* hold */
}
/* constraint to fixed ambiguity */
for (i = 1; i < n; i++)
{
v[nv] = (xa[index[0]] - xa[index[i]]) - (rtk->x[index[0]] - rtk->x[index[i]]);
H[index[0] + nv * rtk->nx] = 1.0;
H[index[i] + nv * rtk->nx] = -1.0;
nv++;
}
}
}
if (nv > 0)
{
R = zeros(nv, nv);
for (i = 0; i < nv; i++)
{
R[i + i * nv] = VAR_HOLDAMB;
}
/* update states with constraints */
if ((info = filter(rtk->x, rtk->P, H, v, R, rtk->nx, nv)))
{
errmsg(rtk, "filter error (info=%d)\n", info);
}
free(R);
}
free(v);
free(H);
}
/* resolve integer ambiguity by LAMBDA ---------------------------------------*/
int resamb_LAMBDA(rtk_t *rtk, double *bias, double *xa)
{
prcopt_t *opt = &rtk->opt;
int i;
int j;
int ny;
int nb;
int info;
int nx = rtk->nx;
int na = rtk->na;
double *D;
double *DP;
double *y;
double *Qy;
double *b;
double *db;
double *Qb;
double *Qab;
double *QQ;
double s[2];
trace(3, "resamb_LAMBDA : nx=%d\n", nx);
rtk->sol.ratio = 0.0;
if (rtk->opt.mode <= PMODE_DGPS || rtk->opt.modear == ARMODE_OFF ||
rtk->opt.thresar[0] < 1.0)
{
return 0;
}
/* single to double-difference transformation matrix (D') */
D = zeros(nx, nx);
if ((nb = ddmat(rtk, D)) <= 0)
{
errmsg(rtk, "no valid double-difference\n");
free(D);
return 0;
}
ny = na + nb;
y = mat(ny, 1);
Qy = mat(ny, ny);
DP = mat(ny, nx);
b = mat(nb, 2);
db = mat(nb, 1);
Qb = mat(nb, nb);
Qab = mat(na, nb);
QQ = mat(na, nb);
/* transform single to double-differenced phase-bias (y=D'*x, Qy=D'*P*D) */
matmul("TN", ny, 1, nx, 1.0, D, rtk->x, 0.0, y);
matmul("TN", ny, nx, nx, 1.0, D, rtk->P, 0.0, DP);
matmul("NN", ny, ny, nx, 1.0, DP, D, 0.0, Qy);
/* phase-bias covariance (Qb) and real-parameters to bias covariance (Qab) */
for (i = 0; i < nb; i++)
{
for (j = 0; j < nb; j++)
{
Qb[i + j * nb] = Qy[na + i + (na + j) * ny];
}
}
for (i = 0; i < na; i++)
{
for (j = 0; j < nb; j++)
{
Qab[i + j * na] = Qy[i + (na + j) * ny];
}
}
trace(4, "N(0)=");
tracemat(4, y + na, 1, nb, 10, 3);
/* lambda/mlambda integer least-square estimation */
if (!(info = lambda(nb, 2, y + na, Qb, b, s)))
{
trace(4, "N(1)=");
tracemat(4, b, 1, nb, 10, 3);
trace(4, "N(2)=");
tracemat(4, b + nb, 1, nb, 10, 3);
rtk->sol.ratio = s[0] > 0 ? static_cast(s[1] / s[0]) : 0.0F;
if (rtk->sol.ratio > 999.9)
{
rtk->sol.ratio = 999.9F;
}
/* validation by popular ratio-test */
if (s[0] <= 0.0 || s[1] / s[0] >= opt->thresar[0])
{
/* transform float to fixed solution (xa=xa-Qab*Qb\(b0-b)) */
for (i = 0; i < na; i++)
{
rtk->xa[i] = rtk->x[i];
for (j = 0; j < na; j++)
{
rtk->Pa[i + j * na] = rtk->P[i + j * nx];
}
}
for (i = 0; i < nb; i++)
{
bias[i] = b[i];
y[na + i] -= b[i];
}
if (!matinv(Qb, nb))
{
matmul("NN", nb, 1, nb, 1.0, Qb, y + na, 0.0, db);
matmul("NN", na, 1, nb, -1.0, Qab, db, 1.0, rtk->xa);
/* covariance of fixed solution (Qa=Qa-Qab*Qb^-1*Qab') */
matmul("NN", na, nb, nb, 1.0, Qab, Qb, 0.0, QQ);
matmul("NT", na, na, nb, -1.0, QQ, Qab, 1.0, rtk->Pa);
trace(3, "resamb : validation ok (nb=%d ratio=%.2f s=%.2f/%.2f)\n",
nb, s[0] == 0.0 ? 0.0 : s[1] / s[0], s[0], s[1]);
/* restore single-differenced ambiguity */
restamb(rtk, bias, nb, xa);
}
else
{
nb = 0;
}
}
else
{ /* validation failed */
errmsg(rtk, "ambiguity validation failed (nb=%d ratio=%.2f s=%.2f/%.2f)\n",
nb, s[1] / s[0], s[0], s[1]);
nb = 0;
}
}
else
{
errmsg(rtk, "lambda error (info=%d)\n", info);
}
free(D);
free(y);
free(Qy);
free(DP);
free(b);
free(db);
free(Qb);
free(Qab);
free(QQ);
return nb; /* number of ambiguities */
}
/* validation of solution ----------------------------------------------------*/
int valpos(rtk_t *rtk, const double *v, const double *R, const int *vflg,
int nv, double thres)
{
#if 0
prcopt_t *opt = &rtk->opt;
double vv = 0.0;
#endif
double fact = thres * thres;
int i;
int stat = 1;
int sat1;
int sat2;
int type;
int freq;
char stype;
trace(3, "valpos : nv=%d thres=%.1f\n", nv, thres);
/* post-fit residual test */
for (i = 0; i < nv; i++)
{
if (v[i] * v[i] <= fact * R[i + i * nv])
{
continue;
}
sat1 = (vflg[i] >> 16) & 0xFF;
sat2 = (vflg[i] >> 8) & 0xFF;
type = (vflg[i] >> 4) & 0xF;
freq = vflg[i] & 0xF;
stype = type == 0 ? 'L' : (type == 1 ? 'L' : 'C');
errmsg(rtk, "large residual (sat=%2d-%2d %c%d v=%6.3f sig=%.3f)\n",
sat1, sat2, stype, freq + 1, v[i], std::sqrt(R[i + i * nv]));
}
#if 0 /* omitted v.2.4.0 */
if (stat && nv > NP(opt))
{
/* chi-square validation */
for (i = 0; i < nv; i++) vv += v[i] * v[i] / R[i + i * nv];
if (vv > chisqr[nv - NP(opt) - 1])
{
errmsg(rtk, "residuals validation failed (nv=%d np=%d vv=%.2f cs=%.2f)\n",
nv, NP(opt), vv, chisqr[nv - NP(opt) - 1]);
stat = 0;
}
else
{
trace(3, "valpos : validation ok (%s nv=%d np=%d vv=%.2f cs=%.2f)\n",
rtk->tstr, nv, NP(opt), vv, chisqr[nv - NP(opt) - 1]);
}
}
#endif
return stat;
}
/* relative positioning ------------------------------------------------------*/
int relpos(rtk_t *rtk, const obsd_t *obs, int nu, int nr,
const nav_t *nav)
{
prcopt_t *opt = &rtk->opt;
gtime_t time = obs[0].time;
double *rs;
double *dts;
double *var;
double *y;
double *e;
double *azel;
double *v;
double *H;
double *R;
double *xp;
double *Pp;
double *xa;
double *bias;
double dt;
int i;
int j;
int f;
int n = nu + nr;
int ns;
int ny;
int nv;
std::vector sat(MAXSAT);
std::vector iu(MAXSAT);
std::vector ir(MAXSAT);
int niter;
int info;
std::vector vflg(MAXOBS * NFREQ * 2 + 1);
std::vector svh(MAXOBS * 2);
int stat = rtk->opt.mode <= PMODE_DGPS ? SOLQ_DGPS : SOLQ_FLOAT;
int nf = opt->ionoopt == IONOOPT_IFLC ? 1 : opt->nf;
trace(3, "relpos : nx=%d nu=%d nr=%d\n", rtk->nx, nu, nr);
dt = timediff(time, obs[nu].time);
rs = mat(6, n);
dts = mat(2, n);
var = mat(1, n);
y = mat(nf * 2, n);
e = mat(3, n);
azel = zeros(2, n);
for (i = 0; i < MAXSAT; i++)
{
rtk->ssat[i].sys = satsys(i + 1, nullptr);
for (j = 0; j < NFREQ; j++)
{
rtk->ssat[i].vsat[j] = rtk->ssat[i].snr[j] = 0;
}
}
/* satellite positions/clocks */
satposs(time, obs, n, nav, opt->sateph, rs, dts, var, svh.data());
/* undifferenced residuals for base station */
if (!zdres(1, obs + nu, nr, rs + nu * 6, dts + nu * 2, &svh[nu], nav, rtk->rb, opt, 1,
y + nu * nf * 2, e + nu * 3, azel + nu * 2))
{
errmsg(rtk, "initial base station position error\n");
free(rs);
free(dts);
free(var);
free(y);
free(e);
free(azel);
return 0;
}
/* time-interpolation of residuals (for post-processing) */
if (opt->intpref)
{
dt = intpres(time, obs + nu, nr, nav, rtk, y + nu * nf * 2);
}
/* select common satellites between rover and base-station */
if ((ns = selsat(obs, azel, nu, nr, opt, sat.data(), iu.data(), ir.data())) <= 0)
{
errmsg(rtk, "no common satellite\n");
free(rs);
free(dts);
free(var);
free(y);
free(e);
free(azel);
return 0;
}
/* temporal update of states */
udstate(rtk, obs, sat.data(), iu.data(), ir.data(), ns, nav);
trace(4, "x(0)=");
tracemat(4, rtk->x, 1, NR_RTK(opt), 13, 4);
xp = mat(rtk->nx, 1);
Pp = zeros(rtk->nx, rtk->nx);
xa = mat(rtk->nx, 1);
matcpy(xp, rtk->x, rtk->nx, 1);
ny = ns * nf * 2 + 2;
v = mat(ny, 1);
H = zeros(rtk->nx, ny);
R = mat(ny, ny);
bias = mat(rtk->nx, 1);
/* add 2 iterations for baseline-constraint moving-base */
niter = opt->niter + (opt->mode == PMODE_MOVEB && opt->baseline[0] > 0.0 ? 2 : 0);
for (i = 0; i < niter; i++)
{
/* undifferenced residuals for rover */
if (!zdres(0, obs, nu, rs, dts, svh.data(), nav, xp, opt, 0, y, e, azel))
{
errmsg(rtk, "rover initial position error\n");
stat = SOLQ_NONE;
break;
}
/* double-differenced residuals and partial derivatives */
if ((nv = ddres(rtk, nav, dt, xp, Pp, sat.data(), y, e, azel, iu.data(), ir.data(), ns, v, H, R, vflg.data())) < 1)
{
errmsg(rtk, "no double-differenced residual\n");
stat = SOLQ_NONE;
break;
}
/* kalman filter measurement update */
matcpy(Pp, rtk->P, rtk->nx, rtk->nx);
if ((info = filter(xp, Pp, H, v, R, rtk->nx, nv)))
{
errmsg(rtk, "filter error (info=%d)\n", info);
stat = SOLQ_NONE;
break;
}
trace(4, "x(%d)=", i + 1);
tracemat(4, xp, 1, NR_RTK(opt), 13, 4);
}
if (stat != SOLQ_NONE && zdres(0, obs, nu, rs, dts, svh.data(), nav, xp, opt, 0, y, e, azel))
{
/* post-fit residuals for float solution */
nv = ddres(rtk, nav, dt, xp, Pp, sat.data(), y, e, azel, iu.data(), ir.data(), ns, v, nullptr, R, vflg.data());
/* validation of float solution */
if (valpos(rtk, v, R, vflg.data(), nv, 4.0))
{
/* update state and covariance matrix */
matcpy(rtk->x, xp, rtk->nx, 1);
matcpy(rtk->P, Pp, rtk->nx, rtk->nx);
/* update ambiguity control struct */
rtk->sol.ns = 0;
for (i = 0; i < ns; i++)
{
for (f = 0; f < nf; f++)
{
if (!rtk->ssat[sat[i] - 1].vsat[f])
{
continue;
}
rtk->ssat[sat[i] - 1].lock[f]++;
rtk->ssat[sat[i] - 1].outc[f] = 0;
if (f == 0)
{
rtk->sol.ns++; /* valid satellite count by L1 */
}
}
}
/* lack of valid satellites */
if (rtk->sol.ns < 4)
{
stat = SOLQ_NONE;
}
}
else
{
stat = SOLQ_NONE;
}
}
/* resolve integer ambiguity by WL-NL */
if (stat != SOLQ_NONE && rtk->opt.modear == ARMODE_WLNL)
{
if (resamb_WLNL(rtk, obs, sat.data(), iu.data(), ir.data(), ns, nav, azel))
{
stat = SOLQ_FIX;
}
}
/* resolve integer ambiguity by TCAR */
else if (stat != SOLQ_NONE && rtk->opt.modear == ARMODE_TCAR)
{
if (resamb_TCAR(rtk, obs, sat.data(), iu.data(), ir.data(), ns, nav, azel))
{
stat = SOLQ_FIX;
}
}
/* resolve integer ambiguity by LAMBDA */
else if (stat != SOLQ_NONE && resamb_LAMBDA(rtk, bias, xa) > 1)
{
if (zdres(0, obs, nu, rs, dts, svh.data(), nav, xa, opt, 0, y, e, azel))
{
/* post-fit reisiduals for fixed solution */
nv = ddres(rtk, nav, dt, xa, nullptr, sat.data(), y, e, azel, iu.data(), ir.data(), ns, v, nullptr, R, vflg.data());
/* validation of fixed solution */
if (valpos(rtk, v, R, vflg.data(), nv, 4.0))
{
/* hold integer ambiguity */
if (++rtk->nfix >= rtk->opt.minfix &&
rtk->opt.modear == ARMODE_FIXHOLD)
{
holdamb(rtk, xa);
}
stat = SOLQ_FIX;
}
}
}
/* save solution status */
if (stat == SOLQ_FIX)
{
for (i = 0; i < 3; i++)
{
rtk->sol.rr[i] = rtk->xa[i];
rtk->sol.qr[i] = static_cast(rtk->Pa[i + i * rtk->na]);
}
rtk->sol.qr[3] = static_cast(rtk->Pa[1]);
rtk->sol.qr[4] = static_cast(rtk->Pa[1 + 2 * rtk->na]);
rtk->sol.qr[5] = static_cast(rtk->Pa[2]);
}
else
{
for (i = 0; i < 3; i++)
{
rtk->sol.rr[i] = rtk->x[i];
rtk->sol.qr[i] = static_cast(rtk->P[i + i * rtk->nx]);
}
rtk->sol.qr[3] = static_cast(rtk->P[1]);
rtk->sol.qr[4] = static_cast(rtk->P[1 + 2 * rtk->nx]);
rtk->sol.qr[5] = static_cast(rtk->P[2]);
rtk->nfix = 0;
}
for (i = 0; i < n; i++)
{
for (j = 0; j < nf; j++)
{
if (obs[i].L[j] == 0.0)
{
continue;
}
rtk->ssat[obs[i].sat - 1].pt[obs[i].rcv - 1][j] = obs[i].time;
rtk->ssat[obs[i].sat - 1].ph[obs[i].rcv - 1][j] = obs[i].L[j];
}
}
for (i = 0; i < ns; i++)
{
for (j = 0; j < nf; j++)
{
/* output snr of rover receiver */
rtk->ssat[sat[i] - 1].snr[j] = obs[iu[i]].SNR[j];
}
}
for (i = 0; i < MAXSAT; i++)
{
for (j = 0; j < nf; j++)
{
if (rtk->ssat[i].fix[j] == 2 && stat != SOLQ_FIX)
{
rtk->ssat[i].fix[j] = 1;
}
if (rtk->ssat[i].slip[j] & 1)
{
rtk->ssat[i].slipc[j]++;
}
}
}
free(rs);
free(dts);
free(var);
free(y);
free(e);
free(azel);
free(xp);
free(Pp);
free(xa);
free(v);
free(H);
free(R);
free(bias);
if (stat != SOLQ_NONE)
{
rtk->sol.stat = stat;
}
return stat != SOLQ_NONE;
}
/* initialize rtk control ------------------------------------------------------
* initialize rtk control struct
* args : rtk_t *rtk IO rtk control/result struct
* prcopt_t *opt I positioning options (see rtklib.h)
* return : none
*-----------------------------------------------------------------------------*/
void rtkinit(rtk_t *rtk, const prcopt_t *opt)
{
sol_t sol0 = {{0, 0}, {}, {}, {}, '0', '0', '0', 0.0, 0.0, 0.0};
ambc_t ambc0 = {{{0, 0}, {0, 0}, {0, 0}, {0, 0}}, {}, {}, {}, 0, {}};
ssat_t ssat0 = {0, 0, {0.0}, {0.0}, {0.0}, {'0'}, {'0'}, {'0'}, {'0'}, {'0'}, {}, {}, {}, {}, 0.0, 0.0, 0.0, 0.0, {{{0, 0}}, {{0, 0}}}, {{}, {}}};
int i;
trace(3, "rtkinit :\n");
rtk->sol = sol0;
for (i = 0; i < 6; i++)
{
rtk->rb[i] = 0.0;
}
rtk->nx = opt->mode <= PMODE_FIXED ? NX_RTK(opt) : pppnx(opt);
rtk->na = opt->mode <= PMODE_FIXED ? NR_RTK(opt) : pppnx(opt);
rtk->tt = 0.0;
rtk->x = zeros(rtk->nx, 1);
rtk->P = zeros(rtk->nx, rtk->nx);
rtk->xa = zeros(rtk->na, 1);
rtk->Pa = zeros(rtk->na, rtk->na);
rtk->nfix = rtk->neb = 0;
for (i = 0; i < MAXSAT; i++)
{
rtk->ambc[i] = ambc0;
rtk->ssat[i] = ssat0;
}
for (i = 0; i < MAXERRMSG; i++)
{
rtk->errbuf[i] = 0;
}
rtk->opt = *opt;
}
/* free rtk control ------------------------------------------------------------
* free memory for rtk control struct
* args : rtk_t *rtk IO rtk control/result struct
* return : none
*-----------------------------------------------------------------------------*/
void rtkfree(rtk_t *rtk)
{
trace(3, "rtkfree :\n");
rtk->nx = rtk->na = 0;
free(rtk->x);
rtk->x = nullptr;
free(rtk->P);
rtk->P = nullptr;
free(rtk->xa);
rtk->xa = nullptr;
free(rtk->Pa);
rtk->Pa = nullptr;
}
/* precise positioning ---------------------------------------------------------
* input observation data and navigation message, compute rover position by
* precise positioning
* args : rtk_t *rtk IO rtk control/result struct
* rtk->sol IO solution
* .time O solution time
* .rr[] IO rover position/velocity
* (I:fixed mode,O:single mode)
* .dtr[0] O receiver clock bias (s)
* .dtr[1] O receiver glonass-gps time offset (s)
* .Qr[] O rover position covarinace
* .stat O solution status (SOLQ_???)
* .ns O number of valid satellites
* .age O age of differential (s)
* .ratio O ratio factor for ambiguity validation
* rtk->rb[] IO base station position/velocity
* (I:relative mode,O:moving-base mode)
* rtk->nx I number of all states
* rtk->na I number of integer states
* rtk->ns O number of valid satellite
* rtk->tt O time difference between current and previous (s)
* rtk->x[] IO float states pre-filter and post-filter
* rtk->P[] IO float covariance pre-filter and post-filter
* rtk->xa[] O fixed states after AR
* rtk->Pa[] O fixed covariance after AR
* rtk->ssat[s] IO sat(s+1) status
* .sys O system (SYS_???)
* .az [r] O azimuth angle (rad) (r=0:rover,1:base)
* .el [r] O elevation angle (rad) (r=0:rover,1:base)
* .vs [r] O data valid single (r=0:rover,1:base)
* .resp [f] O freq(f+1) pseudorange residual (m)
* .resc [f] O freq(f+1) carrier-phase residual (m)
* .vsat [f] O freq(f+1) data valid (0:invalid,1:valid)
* .fix [f] O freq(f+1) ambiguity flag
* (0:nodata,1:float,2:fix,3:hold)
* .slip [f] O freq(f+1) slip flag
* (bit8-7:rcv1 LLI, bit6-5:rcv2 LLI,
* bit2:parity unknown, bit1:slip)
* .lock [f] IO freq(f+1) carrier lock count
* .outc [f] IO freq(f+1) carrier outage count
* .slipc[f] IO freq(f+1) cycle slip count
* .rejc [f] IO freq(f+1) data reject count
* .gf IO geometry-free phase (L1-L2) (m)
* .gf2 IO geometry-free phase (L1-L5) (m)
* rtk->nfix IO number of continuous fixes of ambiguity
* rtk->neb IO bytes of error message buffer
* rtk->errbuf IO error message buffer
* rtk->tstr O time string for debug
* rtk->opt I processing options
* obsd_t *obs I observation data for an epoch
* obs[i].rcv=1:rover,2:reference
* sorted by receiver and satellte
* int n I number of observation data
* nav_t *nav I navigation messages
* return : status (0:no solution,1:valid solution)
* notes : before calling function, base station position rtk->sol.rb[] should
* be properly set for relative mode except for moving-baseline
*-----------------------------------------------------------------------------*/
int rtkpos(rtk_t *rtk, const obsd_t *obs, int n, const nav_t *nav)
{
prcopt_t *opt = &rtk->opt;
sol_t solb = {{0, 0}, {}, {}, {}, '0', '0', '0', 0.0, 0.0, 0.0};
gtime_t time;
int i;
int nu;
int nr;
char msg[128] = "";
trace(3, "rtkpos : time=%s n=%d\n", time_str(obs[0].time, 3), n);
trace(4, "obs=\n");
traceobs(4, obs, n);
/*trace(5,"nav=\n"); tracenav(5,nav);*/
/* set base station position */
if (opt->refpos <= POSOPT_RINEX && opt->mode != PMODE_SINGLE &&
opt->mode != PMODE_MOVEB)
{
for (i = 0; i < 6; i++)
{
rtk->rb[i] = i < 3 ? opt->rb[i] : 0.0;
}
}
/* count rover/base station observations */
for (nu = 0; nu < n && obs[nu].rcv == 1; nu++)
{
}
for (nr = 0; nu + nr < n && obs[nu + nr].rcv == 2; nr++)
{
}
time = rtk->sol.time; /* previous epoch */
/* rover position by single point positioning */
if (!pntpos(obs, nu, nav, &rtk->opt, &rtk->sol, nullptr, rtk->ssat, msg))
{
errmsg(rtk, "point pos error (%s)\n", msg);
if (!rtk->opt.dynamics)
{
outsolstat(rtk);
return 0;
}
}
if (time.time != 0)
{
rtk->tt = timediff(rtk->sol.time, time);
}
/* single point positioning */
if (opt->mode == PMODE_SINGLE)
{
outsolstat(rtk);
return 1;
}
/* suppress output of single solution */
if (!opt->outsingle)
{
rtk->sol.stat = SOLQ_NONE;
}
/* precise point positioning */
if (opt->mode >= PMODE_PPP_KINEMA)
{
pppos(rtk, obs, nu, nav);
outsolstat(rtk);
return 1;
}
/* check number of data of base station and age of differential */
if (nr == 0)
{
errmsg(rtk, "no base station observation data for rtk\n");
outsolstat(rtk);
return 1;
}
if (opt->mode == PMODE_MOVEB)
{ /* moving baseline */
/* estimate position/velocity of base station */
if (!pntpos(obs + nu, nr, nav, &rtk->opt, &solb, nullptr, nullptr, msg))
{
errmsg(rtk, "base station position error (%s)\n", msg);
return 0;
}
rtk->sol.age = static_cast(timediff(rtk->sol.time, solb.time));
if (std::fabs(rtk->sol.age) > TTOL_MOVEB)
{
errmsg(rtk, "time sync error for moving-base (age=%.1f)\n", rtk->sol.age);
return 0;
}
for (i = 0; i < 6; i++)
{
rtk->rb[i] = solb.rr[i];
}
/* time-synchronized position of base station */
for (i = 0; i < 3; i++)
{
rtk->rb[i] += rtk->rb[i + 3] * rtk->sol.age;
}
}
else
{
rtk->sol.age = static_cast(timediff(obs[0].time, obs[nu].time));
if (std::fabs(rtk->sol.age) > opt->maxtdiff)
{
errmsg(rtk, "age of differential error (age=%.1f)\n", rtk->sol.age);
outsolstat(rtk);
return 1;
}
}
/* relative potitioning */
relpos(rtk, obs, nu, nr, nav);
outsolstat(rtk);
return 1;
}