/*! * \file gnss_signal_processing.cc * \brief This library gathers a few functions used by the algorithms of gnss-sdr, * regardless of system used * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gnss_signal_processing.h" #include auto auxCeil2 = [](float x){ return static_cast(static_cast((x)+1)); }; void complex_exp_gen(std::complex* _dest, double _f, double _fs, unsigned int _samps) { gr::fxpt_nco d_nco; d_nco.set_freq((GPS_TWO_PI * _f) / _fs); d_nco.sincos(_dest, _samps, 1); } void complex_exp_gen_conj(std::complex* _dest, double _f, double _fs, unsigned int _samps) { gr::fxpt_nco d_nco; d_nco.set_freq(-(GPS_TWO_PI * _f) / _fs); d_nco.sincos(_dest, _samps, 1); } void hex_to_binary_converter(int * _dest, char _from) { switch(_from) { case '0': *(_dest) = 1; *(_dest+1) = 1; *(_dest+2) = 1; *(_dest+3) = 1; break; case '1': *(_dest) = 1; *(_dest+1) = 1; *(_dest+2) = 1; *(_dest+3) = -1; break; case '2': *(_dest) = 1; *(_dest+1) = 1; *(_dest+2) = -1; *(_dest+3) = 1; break; case '3': *(_dest) = 1; *(_dest+1) = 1; *(_dest+2) = -1; *(_dest+3) = -1; break; case '4': *(_dest) = 1; *(_dest+1) = -1; *(_dest+2) = 1; *(_dest+3) = 1; break; case '5': *(_dest) = 1; *(_dest+1) = -1; *(_dest+2) = 1; *(_dest+3) = -1; break; case '6': *(_dest) = 1; *(_dest+1) = -1; *(_dest+2) = -1; *(_dest+3) = 1; break; case '7': *(_dest) = 1; *(_dest+1) = -1; *(_dest+2) = -1; *(_dest+3) = -1; break; case '8': *(_dest) = -1; *(_dest+1) = 1; *(_dest+2) = 1; *(_dest+3) = 1; break; case '9': *(_dest) = -1; *(_dest+1) = 1; *(_dest+2) = 1; *(_dest+3) = -1; break; case 'A': *(_dest) = -1; *(_dest+1) = 1; *(_dest+2) = -1; *(_dest+3) = 1; break; case 'B': *(_dest) = -1; *(_dest+1) = 1; *(_dest+2) = -1; *(_dest+3) = -1; break; case 'C': *(_dest) = -1; *(_dest+1) = -1; *(_dest+2) = 1; *(_dest+3) = 1; break; case 'D': *(_dest) = -1; *(_dest+1) = -1; *(_dest+2) = 1; *(_dest+3) = -1; break; case 'E': *(_dest) = -1; *(_dest+1) = -1; *(_dest+2) = -1; *(_dest+3) = 1; break; case 'F': *(_dest) = -1; *(_dest+1) = -1; *(_dest+2) = -1; *(_dest+3) = -1; break; } } void resampler(std::complex* _from, std::complex* _dest, float _fs_in, float _fs_out, unsigned int _length_in, unsigned int _length_out) { unsigned int _codeValueIndex; float aux; //--- Find time constants -------------------------------------------------- const float _t_in = 1 / _fs_in; // Incoming sampling period in sec const float _t_out = 1 / _fs_out; // Out sampling period in sec for (unsigned int i = 0; i < _length_out - 1; i++) { //=== Digitizing ======================================================= //--- compute index array to read sampled values ------------------------- //_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1; aux = (_t_out * (i + 1)) / _t_in; _codeValueIndex = auxCeil2(aux) - 1; //if repeat the chip -> upsample by nearest neighborhood interpolation _dest[i] = _from[_codeValueIndex]; } //--- Correct the last index (due to number rounding issues) ----------- _dest[_length_out - 1] = _from[_length_in - 1]; }