/*! * \file gps_sdr_signal_processing.cc * \brief This class implements various functions for GPS L1 CA signals * \author Javier Arribas, 2011. jarribas(at)cttc.es * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_sdr_signal_processing.h" auto auxCeil = [](float x) { return static_cast(static_cast((x) + 1)); }; void gps_l1_ca_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 1023; bool G1[_code_length]; bool G2[_code_length]; bool G1_register[10], G2_register[10]; bool feedback1, feedback2; bool aux; uint32_t lcv, lcv2; uint32_t delay; int32_t prn_idx; /* G2 Delays as defined in GPS-ISD-200D */ const int32_t delays[51] = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472, 473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/, 145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762, 355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/}; // compute delay array index for given PRN number if (120 <= _prn && _prn <= 138) { prn_idx = _prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88) } else { prn_idx = _prn - 1; } /* A simple error check */ if ((prn_idx < 0) || (prn_idx > 51)) return; for (lcv = 0; lcv < 10; lcv++) { G1_register[lcv] = true; G2_register[lcv] = true; } /* Generate G1 & G2 Register */ for (lcv = 0; lcv < _code_length; lcv++) { G1[lcv] = G1_register[0]; G2[lcv] = G2_register[0]; feedback1 = G1_register[7] ^ G1_register[0]; feedback2 = (G2_register[8] + G2_register[7] + G2_register[4] + G2_register[2] + G2_register[1] + G2_register[0]) & 0x1; for (lcv2 = 0; lcv2 < 9; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; G2_register[lcv2] = G2_register[lcv2 + 1]; } G1_register[9] = feedback1; G2_register[9] = feedback2; } /* Set the delay */ delay = _code_length - delays[prn_idx]; delay += _chip_shift; delay %= _code_length; /* Generate PRN from G1 and G2 Registers */ for (lcv = 0; lcv < _code_length; lcv++) { aux = G1[(lcv + _chip_shift) % _code_length] ^ G2[delay]; if (aux == true) { _dest[lcv] = 1; } else { _dest[lcv] = -1; } delay++; delay %= _code_length; } } void gps_l1_ca_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 1023; int32_t ca_code_int[_code_length]; gps_l1_ca_code_gen_int(ca_code_int, _prn, _chip_shift); for (uint32_t ii = 0; ii < _code_length; ++ii) { _dest[ii] = static_cast(ca_code_int[ii]); } } void gps_l1_ca_code_gen_complex(std::complex* _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 1023; int32_t ca_code_int[_code_length] = {0}; gps_l1_ca_code_gen_int(ca_code_int, _prn, _chip_shift); for (uint32_t ii = 0; ii < _code_length; ++ii) { _dest[ii] = std::complex(static_cast(ca_code_int[ii]), 0.0f); } } /* * Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency * NOTICE: the number of samples is rounded towards zero (integer truncation) */ void gps_l1_ca_code_gen_complex_sampled(std::complex* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book std::complex _code[1023]; int32_t _samplesPerCode, _codeValueIndex; float _ts; float _tc; float aux; const int32_t _codeFreqBasis = 1023000; //Hz const int32_t _codeLength = 1023; //--- Find number of samples per spreading code ---------------------------- _samplesPerCode = static_cast(static_cast(_fs) / static_cast(_codeFreqBasis / _codeLength)); //--- Find time constants -------------------------------------------------- _ts = 1.0 / static_cast(_fs); // Sampling period in sec _tc = 1.0 / static_cast(_codeFreqBasis); // C/A chip period in sec gps_l1_ca_code_gen_complex(_code, _prn, _chip_shift); //generate C/A code 1 sample per chip for (int32_t i = 0; i < _samplesPerCode; i++) { //=== Digitizing ======================================================= //--- Make index array to read C/A code values ------------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). // _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1; aux = (_ts * (i + 1)) / _tc; _codeValueIndex = auxCeil(aux) - 1; //--- Make the digitized version of the C/A code ----------------------- // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == _samplesPerCode - 1) { //--- Correct the last index (due to number rounding issues) ----------- _dest[i] = _code[_codeLength - 1]; } else { _dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample } } }