/*! * \file gps_l1_ca_tcp_connector_tracking_cc.cc * \brief Implementation of a TCP connector block based on Code DLL + carrier PLL * \author David Pubill, 2012. dpubill(at)cttc.es * Javier Arribas, 2011. jarribas(at)cttc.es * * * Code DLL + carrier PLL according to the algorithms described in: * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkha user, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_tcp_connector_tracking_cc.h" #include #include #include #include #include #include #include #include #include "gps_sdr_signal_processing.h" #include "tracking_discriminators.h" #include "lock_detectors.h" #include "GPS_L1_CA.h" #include "control_message_factory.h" #include "tcp_communication.h" #include "tcp_packet_data.h" /*! * \todo Include in definition header file */ #define CN0_ESTIMATION_SAMPLES 20 #define MINIMUM_VALID_CN0 25 #define MAXIMUM_LOCK_FAIL_COUNTER 50 #define CARRIER_LOCK_THRESHOLD 0.85 using google::LogMessage; gps_l1_ca_tcp_connector_tracking_cc_sptr gps_l1_ca_tcp_connector_make_tracking_cc( long if_freq, long fs_in, unsigned int vector_length, boost::shared_ptr queue, bool dump, std::string dump_filename, float early_late_space_chips, size_t port_ch0) { return gps_l1_ca_tcp_connector_tracking_cc_sptr(new Gps_L1_Ca_Tcp_Connector_Tracking_cc(if_freq, fs_in, vector_length, queue, dump, dump_filename, early_late_space_chips, port_ch0)); } void Gps_L1_Ca_Tcp_Connector_Tracking_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required) { if (noutput_items != 0) { ninput_items_required[0] = (int)d_vector_length*2; //set the required available samples in each call } } Gps_L1_Ca_Tcp_Connector_Tracking_cc::Gps_L1_Ca_Tcp_Connector_Tracking_cc( long if_freq, long fs_in, unsigned int vector_length, boost::shared_ptr queue, bool dump, std::string dump_filename, float early_late_space_chips, size_t port_ch0) : gr::block("Gps_L1_Ca_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { // Telemetry bit synchronization message port input this->message_port_register_in(pmt::mp("preamble_timestamp_s")); // initialize internal vars d_queue = queue; d_dump = dump; d_if_freq = if_freq; d_fs_in = fs_in; d_vector_length = vector_length; d_dump_filename = dump_filename; //--- DLL variables -------------------------------------------------------- d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) //--- TCP CONNECTOR variables -------------------------------------------------------- d_port_ch0 = port_ch0; d_port = 0; d_listen_connection = true; d_control_id = 0; // Initialization of local code replica // Get space for a vector with the C/A code replica sampled 1x/chip d_ca_code = static_cast(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment())); // correlator outputs (scalar) d_n_correlator_taps = 3; // Very-Early, Early, Prompt, Late, Very-Late d_correlator_outs = static_cast(volk_malloc(d_n_correlator_taps*sizeof(gr_complex), volk_get_alignment())); for (int n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0,0); } // map memory pointers of correlator outputs d_Early = &d_correlator_outs[0]; d_Prompt = &d_correlator_outs[1]; d_Late = &d_correlator_outs[2]; d_local_code_shift_chips = static_cast(volk_malloc(d_n_correlator_taps * sizeof(float), volk_get_alignment())); // Set TAPs delay values [chips] d_local_code_shift_chips[0] = - d_early_late_spc_chips; d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = d_early_late_spc_chips; d_correlation_length_samples=d_vector_length; multicorrelator_cpu.init(2 * d_correlation_length_samples, d_n_correlator_taps); //--- Perform initializations ------------------------------ // define initial code frequency basis of NCO d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ; // define residual code phase (in chips) d_rem_code_phase_samples = 0.0; // define residual carrier phase d_rem_carr_phase_rad = 0.0; // sample synchronization d_sample_counter = 0; d_sample_counter_seconds = 0; d_acq_sample_stamp = 0; d_enable_tracking = false; d_pull_in = false; d_current_prn_length_samples = (int)d_vector_length; // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; systemName["G"] = std::string("GPS"); systemName["R"] = std::string("GLONASS"); systemName["S"] = std::string("SBAS"); systemName["E"] = std::string("Galileo"); systemName["C"] = std::string("Compass"); d_channel_internal_queue = 0; d_acquisition_gnss_synchro = 0; d_channel = 0; d_next_rem_code_phase_samples = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_acc_carrier_phase_rad = 0.0; d_code_phase_samples = 0; d_next_prn_length_samples = 0; d_code_phase_step_chips = 0.0; } void Gps_L1_Ca_Tcp_Connector_Tracking_cc::start_tracking() { /* * correct the code phase according to the delay between acq and trk */ d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; long int acq_trk_diff_samples; float acq_trk_diff_seconds; // jarribas: this patch correct a situation where the tracking sample counter // is equal to 0 (remains in the initial state) at the first acquisition to tracking transition // of the receiver operation when is connecting to simulink server. // if (d_sample_counterPRN) << std::endl; LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; // enable tracking d_pull_in = true; d_enable_tracking = true; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; } Gps_L1_Ca_Tcp_Connector_Tracking_cc::~Gps_L1_Ca_Tcp_Connector_Tracking_cc() { d_dump_file.close(); delete[] d_Prompt_buffer; volk_free(d_ca_code); volk_free(d_local_code_shift_chips); volk_free(d_correlator_outs); d_tcp_com.close_tcp_connection(d_port); multicorrelator_cpu.free(); } int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // process vars float carr_error; float carr_nco; float code_error; float code_nco; tcp_packet_data tcp_data; // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data; // Block input data and block output stream pointers const gr_complex* in = (gr_complex*) input_items[0]; Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; if (d_enable_tracking == true) { // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; /* * Receiver signal alignment */ if (d_pull_in == true) { int samples_offset; // 28/11/2011 ACQ to TRK transition BUG CORRECTION float acq_trk_shif_correction_samples; int acq_to_trk_delay_samples; acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; acq_trk_shif_correction_samples = d_next_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_next_prn_length_samples); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); // /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE current_synchro_data.Tracking_timestamp_secs = (static_cast(d_sample_counter) + static_cast(d_rem_code_phase_samples)) / static_cast(d_fs_in); *out[0] = current_synchro_data; d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in); d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples d_pull_in = false; consume_each(samples_offset); //shift input to perform alignement with local replica return 1; } // Update the prn length based on code freq (variable) and // sampling frequency (fixed) // variable code PRN sample block size d_current_prn_length_samples = d_next_prn_length_samples; // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // perform carrier wipe-off and compute Early, Prompt and Late correlation multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in); double carr_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_hz / d_fs_in); multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad, carr_phase_step_rad, rem_code_phase_chips, d_code_phase_step_chips, d_current_prn_length_samples); //! Variable used for control d_control_id++; //! Send and receive a TCP packet boost::array tx_variables_array = {{d_control_id, (*d_Early).real(), (*d_Early).imag(), (*d_Late).real(), (*d_Late).imag(), (*d_Prompt).real(), (*d_Prompt).imag(), d_acq_carrier_doppler_hz, 1}}; d_tcp_com.send_receive_tcp_packet_gps_l1_ca(tx_variables_array, &tcp_data); //! Recover the tracking data code_error = tcp_data.proc_pack_code_error; carr_error = tcp_data.proc_pack_carr_error; // Modify carrier freq based on NCO command d_carrier_doppler_hz = tcp_data.proc_pack_carrier_doppler_hz; // Modify code freq based on NCO command code_nco = 1/(1/GPS_L1_CA_CODE_RATE_HZ - code_error/GPS_L1_CA_CODE_LENGTH_CHIPS); d_code_freq_hz = code_nco; // Update the phasestep based on code freq (variable) and // sampling frequency (fixed) d_code_phase_step_chips = d_code_freq_hz / (float)d_fs_in; //[chips] // variable code PRN sample block size double T_chip_seconds; double T_prn_seconds; double T_prn_samples; double K_blk_samples; T_chip_seconds = 1 / (double)d_code_freq_hz; T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; T_prn_samples = T_prn_seconds * (double)d_fs_in; d_rem_code_phase_samples = d_next_rem_code_phase_samples; K_blk_samples = T_prn_samples + d_rem_code_phase_samples;//-code_error*(double)d_fs_in; // Update the current PRN delay (code phase in samples) double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ; double T_prn_true_samples = T_prn_true_seconds * (double)d_fs_in; d_code_phase_samples = d_code_phase_samples + T_prn_samples - T_prn_true_samples; if (d_code_phase_samples < 0) { d_code_phase_samples = T_prn_true_samples + d_code_phase_samples; } d_code_phase_samples = fmod(d_code_phase_samples, T_prn_true_samples); d_next_prn_length_samples = round(K_blk_samples); //round to a discrete samples d_next_rem_code_phase_samples = K_blk_samples - d_next_prn_length_samples; //rounding error /*! * \todo Improve the lock detection algorithm! */ // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt; d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS); d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); // ###### TRACKING UNLOCK NOTIFICATION ##### if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; } if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; std::unique_ptr cmf(new ControlMessageFactory()); if (d_queue != gr::msg_queue::sptr()) { d_queue->handle(cmf->GetQueueMessage(d_channel, 2)); } d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } } // ########### Output the tracking data to navigation and PVT ########## current_synchro_data.Prompt_I = (double)(*d_Prompt).real(); current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag(); // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??) current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_rem_code_phase_samples)/(double)d_fs_in; //compute remnant code phase samples AFTER the Tracking timestamp d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0 current_synchro_data.Code_phase_secs = 0; current_synchro_data.Tracking_timestamp_secs = d_sample_counter_seconds; current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz; current_synchro_data.Code_phase_secs = (double)d_code_phase_samples * (1/(float)d_fs_in); current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms=1; } else { *d_Early = gr_complex(0,0); *d_Prompt = gr_complex(0,0); *d_Late = gr_complex(0,0); // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_rem_code_phase_samples)/(double)d_fs_in; //! When tracking is disabled an array of 1's is sent to maintain the TCP connection boost::array tx_variables_array = {{1,1,1,1,1,1,1,1,0}}; d_tcp_com.send_receive_tcp_packet_gps_l1_ca(tx_variables_array, &tcp_data); } //assign the GNURadio block output data *out[0] = current_synchro_data; if(d_dump) { // MULTIPLEXED FILE RECORDING - Record results to file float prompt_I; float prompt_Q; float tmp_E, tmp_P, tmp_L; float tmp_float; prompt_I = (*d_Prompt).real(); prompt_Q = (*d_Prompt).imag(); tmp_E = std::abs(*d_Early); tmp_P = std::abs(*d_Prompt); tmp_L = std::abs(*d_Late); try { // EPR d_dump_file.write((char*)&tmp_E, sizeof(float)); d_dump_file.write((char*)&tmp_P, sizeof(float)); d_dump_file.write((char*)&tmp_L, sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write((char*)&prompt_I, sizeof(float)); d_dump_file.write((char*)&prompt_Q, sizeof(float)); // PRN start sample stamp //tmp_float=(float)d_sample_counter; d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int)); // accumulated carrier phase d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float)); // carrier and code frequency d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float)); d_dump_file.write((char*)&d_code_freq_hz, sizeof(float)); //PLL commands d_dump_file.write((char*)&carr_error, sizeof(float)); d_dump_file.write((char*)&carr_nco, sizeof(float)); //DLL commands d_dump_file.write((char*)&code_error, sizeof(float)); d_dump_file.write((char*)&code_nco, sizeof(float)); // CN0 and carrier lock test d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float)); d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float)); // AUX vars (for debug purposes) tmp_float = 0; d_dump_file.write((char*)&tmp_float, sizeof(float)); d_dump_file.write((char*)&d_sample_counter_seconds, sizeof(double)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates d_sample_counter_seconds = d_sample_counter_seconds + ( ((double)d_current_prn_length_samples) / (double)d_fs_in ); d_sample_counter += d_current_prn_length_samples; //count for the processed samples return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false } void Gps_L1_Ca_Tcp_Connector_Tracking_cc::set_channel(unsigned int channel) { d_channel = channel; LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename.append(boost::lexical_cast(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } //! Listen for connections on a TCP port if (d_listen_connection == true) { d_port = d_port_ch0 + d_channel; d_listen_connection = d_tcp_com.listen_tcp_connection(d_port, d_port_ch0); } } void Gps_L1_Ca_Tcp_Connector_Tracking_cc::set_channel_queue(concurrent_queue *channel_internal_queue) { d_channel_internal_queue = channel_internal_queue; } void Gps_L1_Ca_Tcp_Connector_Tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; }