; Default configuration file ; You can define your own receiver and invoke it by doing ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz]. GNSS-SDR.internal_fs_hz=32000000 ;######### CONTROL_THREAD CONFIG ############ ControlThread.wait_for_flowgraph=false ;######### SUPL RRLP GPS assistance configuration ##### ;GNSS-SDR.SUPL_gps_enabled=false ;GNSS-SDR.SUPL_read_gps_assistance_xml=false ;GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com ;GNSS-SDR.SUPL_gps_ephemeris_port=7275 ;GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com ;GNSS-SDR.SUPL_gps_acquisition_port=7275 ;GNSS-SDR.SUPL_MCC=244 ;GNSS-SDR.SUPL_MNS=5 ;GNSS-SDR.SUPL_LAC=0x59e2 ;GNSS-SDR.SUPL_CI=0x31b0 ;######### SIGNAL_SOURCE CONFIG ############ ;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental) SignalSource.implementation=File_Signal_Source ;#filename: path to file with the captured GNSS signal samples to be processed ;SignalSource.filename=/home/marc/E5a_acquisitions/signal_source_5X_primary.dat ;SignalSource.filename=/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat ;SignalSource.filename=/home/marc/E5a_acquisitions/Tiered_sim_4sat_stup4_2s_up.dat ;SignalSource.filename=/home/marc/E5a_acquisitions/signal_source_sec21M_long.dat SignalSource.filename=../data/32MS_complex.dat; ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. SignalSource.item_type=gr_complex ;#sampling_frequency: Original Signal sampling frequency in [Hz] SignalSource.sampling_frequency=32000000 ;#freq: RF front-end center frequency in [Hz] SignalSource.freq=1176450000 ;#gain: Front-end Gain in [dB] SignalSource.gain=50 ;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0) SignalSource.subdevice=B:0 ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. SignalSource.samples=0 ;#repeat: Repeat the processing file. Disable this option in this version SignalSource.repeat=false ;#dump: Dump the Signal source data to a file. Disable this option in this version SignalSource.dump=false SignalSource.dump_filename=../data/signal_source.dat ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. ; it helps to not overload the CPU, but the processing time will be longer. SignalSource.enable_throttle_control=false ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;SignalConditioner.implementation=Signal_Conditioner SignalConditioner.implementation=Pass_Through ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. Please disable it in this version. ;#implementation: [Pass_Through] disables this block DataTypeAdapter.implementation=Pass_Through ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] ;#[Pass_Through] disables this block ;#[Fir_Filter] enables a FIR Filter ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. ;InputFilter.implementation=Fir_Filter ;InputFilter.implementation=Freq_Xlating_Fir_Filter InputFilter.implementation=Pass_Through ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=../data/input_filter.dat ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. InputFilter.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 InputFilter.band1_end=0.45 InputFilter.band2_begin=0.55 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.sampling_frequency=32000000 InputFilter.IF=0 ;######### RESAMPLER CONFIG ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation ;Resampler.implementation=Direct_Resampler Resampler.implementation=Pass_Through ;#dump: Dump the resamplered data to a file. Resampler.dump=false ;#dump_filename: Log path and filename. Resampler.dump_filename=../data/resampler.dat ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. Resampler.item_type=gr_complex ;#sample_freq_in: the sample frequency of the input signal Resampler.sample_freq_in=8000000 ;#sample_freq_out: the desired sample frequency of the output signal Resampler.sample_freq_out=4000000 ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available satellite channels. Channels_Galileo.count=1 ;#in_acquisition: Number of channels simultaneously acquiring Channels.in_acquisition=1 ;#system: GPS, GLONASS, Galileo, SBAS or Compass ;#if the option is disabled by default is assigned GPS Channel.system=Galileo ;#signal: ;# "1C" GPS L1 C/A ;# "1P" GPS L1 P ;# "1W" GPS L1 Z-tracking and similar (AS on) ;# "1Y" GPS L1 Y ;# "1M" GPS L1 M ;# "1N" GPS L1 codeless ;# "2C" GPS L2 C/A ;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless ;# "2S" GPS L2 L2C (M) ;# "2L" GPS L2 L2C (L) ;# "2X" GPS L2 L2C (M+L) ;# "2P" GPS L2 P ;# "2W" GPS L2 Z-tracking and similar (AS on) ;# "2Y" GPS L2 Y ;# "2M" GPS GPS L2 M ;# "2N" GPS L2 codeless ;# "5I" GPS L5 I ;# "5Q" GPS L5 Q ;# "5X" GPS L5 I+Q ;# "1C" GLONASS G1 C/A ;# "1P" GLONASS G1 P ;# "2C" GLONASS G2 C/A (Glonass M) ;# "2P" GLONASS G2 P ;# "1A" GALILEO E1 A (PRS) ;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL) ;# "1C" GALILEO E1 C (no data) ;# "1X" GALILEO E1 B+C ;# "1Z" GALILEO E1 A+B+C ;# "5I" GALILEO E5a I (F/NAV OS) ;# "5Q" GALILEO E5a Q (no data) ;# "5X" GALILEO E5a I+Q ;# "7I" GALILEO E5b I ;# "7Q" GALILEO E5b Q ;# "7X" GALILEO E5b I+Q ;# "8I" GALILEO E5 I ;# "8Q" GALILEO E5 Q ;# "8X" GALILEO E5 I+Q ;# "6A" GALILEO E6 A ;# "6B" GALILEO E6 B ;# "6C" GALILEO E6 C ;# "6X" GALILEO E6 B+C ;# "6Z" GALILEO E6 A+B+C ;# "1C" SBAS L1 C/A ;# "5I" SBAS L5 I ;# "5Q" SBAS L5 Q ;# "5X" SBAS L5 I+Q ;# "2I" COMPASS E2 I ;# "2Q" COMPASS E2 Q ;# "2X" COMPASS E2 IQ ;# "7I" COMPASS E5b I ;# "7Q" COMPASS E5b Q ;# "7X" COMPASS E5b IQ ;# "6I" COMPASS E6 I ;# "6Q" COMPASS E6 Q ;# "6X" COMPASS E6 IQ ;#if the option is disabled by default is assigned "1C" GPS L1 C/A Channel.signal=5X ;######### SPECIFIC CHANNELS CONFIG ###### ;#The following options are specific to each channel and overwrite the generic options ;######### CHANNEL 0 CONFIG ############ Channel0.system=Galileo Channel0.signal=5X ;#satellite: Satellite PRN ID for this channel. Disable this option to random search Channel0.satellite=19 ;Channel0.repeat_satellite=true ;######### CHANNEL 1 CONFIG ############ ;Channel1.system=Galileo ;Channel1.signal=5Q ;Channel1.satellite=12 ;######### CHANNEL 2 CONFIG ############ ;Channel2.system=Galileo ;Channel2.signal=5Q ;Channel2.satellite=11 ;######### CHANNEL 3 CONFIG ############ ;Channel3.system=Galileo ;Channel3.signal=5Q ;Channel3.satellite=20 ;######### ACQUISITION GLOBAL CONFIG ############ ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_Galileo.dump=true ;#filename: Log path and filename Acquisition_Galileo.dump_filename=./acq_dump.dat ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. Acquisition_Galileo.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_Galileo.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_Galileo.coherent_integration_time_ms=1 ;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] Acquisition_Galileo.implementation=Galileo_E5a_Noncoherent_IQ_Acquisition_CAF ;#threshold: Acquisition threshold. It will be ignored if pfa is defined. Acquisition_Galileo.threshold=0.001 ;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] Acquisition_Galileo.pfa=0.0003 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_Galileo.doppler_max=10000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_Galileo.doppler_step=250 ;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take ;maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition]) Acquisition_Galileo.bit_transition_flag=false ;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true Acquisition_Galileo.max_dwells=1 ;#CAF filter: **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is desactivated. Recommended value 3000 Hz Acquisition_Galileo.CAF_window_hz=0 ;#Zero_padding: **Only for E5a** Avoids power loss and doppler ambiguity in bit transitions by correlating one code with twice the input data length, ensuring that at least one full code is present without transitions. ;#If set to 1 it is ON, if set to 0 it is OFF. Acquisition_Galileo.Zero_padding=0 ;######### TRACKING GLOBAL CONFIG ############ ;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] Tracking_Galileo.implementation=Galileo_E5a_DLL_PLL_Tracking ;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version. Tracking_Galileo.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_Galileo.if=0 ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_Galileo.dump=true ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_Galileo.dump_filename=./tracking_ch_ ;#pll_bw_hz_init: **Only for E5a** PLL loop filter bandwidth during initialization [Hz] Tracking_Galileo.pll_bw_hz_init=20.0; ;#dll_bw_hz_init: **Only for E5a** DLL loop filter bandwidth during initialization [Hz] Tracking_Galileo.dll_bw_hz_init=20.0; ;#dll_ti_ms: **Only for E5a** loop filter integration time after initialization (secondary code delay search)[ms] ;Tracking_Galileo.ti_ms=3; Tracking_Galileo.ti_ms=1; ;#pll_bw_hz: PLL loop filter bandwidth [Hz] ;Tracking.pll_bw_hz=5.0; Tracking_Galileo.pll_bw_hz=20.0; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] ;Tracking.dll_bw_hz=2.0; Tracking_Galileo.dll_bw_hz=20.0; ;#fll_bw_hz: FLL loop filter bandwidth [Hz] ;Tracking_Galileo.fll_bw_hz=10.0; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_Galileo.order=2; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] Tracking_Galileo.early_late_space_chips=0.5; ;######### TELEMETRY DECODER CONFIG ############ ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A. TelemetryDecoder_Galileo.implementation=Galileo_E5a_Telemetry_Decoder TelemetryDecoder_Galileo.dump=false ;######### OBSERVABLES CONFIG ############ ;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A. ;Use [Galileo_E1B_Observables] for E5a also. Observables.implementation=Galileo_E1B_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ ;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version. ;Use [GALILEO_E1_PVT] for E5a also. PVT.implementation=GALILEO_E1_PVT ;#averaging_depth: Number of PVT observations in the moving average algorithm PVT.averaging_depth=100 ;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false] PVT.flag_averaging=true ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] PVT.output_rate_ms=100 ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. PVT.display_rate_ms=500 ;# RINEX, KML, and NMEA output configuration ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. PVT.dump_filename=./PVT ;#nmea_dump_filename: NMEA log path and filename PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea; ;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one) PVT.flag_nmea_tty_port=true; ;#nmea_dump_devname: serial device descriptor for NMEA logging PVT.nmea_dump_devname=/dev/pts/4 ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] PVT.dump=false ;######### OUTPUT_FILTER CONFIG ############ ;# Receiver output filter: Leave this block disabled in this version OutputFilter.implementation=Null_Sink_Output_Filter OutputFilter.filename=data/gnss-sdr.dat OutputFilter.item_type=gr_complex