/*! * \file galileo_e1_pcps_ambiguous_acquisition_test.cc * \brief This class implements an acquisition test for * GalileoE1PcpsAmbiguousAcquisition class based on some input parameters. * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "Galileo_E1.h" #include "acquisition_dump_reader.h" #include "concurrent_queue.h" #include "galileo_e1_pcps_ambiguous_acquisition.h" #include "gnss_block_factory.h" #include "gnss_block_interface.h" #include "gnss_sdr_filesystem.h" #include "gnss_sdr_valve.h" #include "gnss_signal.h" #include "gnss_synchro.h" #include "gnuplot_i.h" #include "in_memory_configuration.h" #include "test_flags.h" #include #include #include #include #include #include #include #include #include #include #if HAS_GENERIC_LAMBDA #else #include #endif #ifdef GR_GREATER_38 #include #else #include #endif #if PMT_USES_BOOST_ANY namespace wht = boost; #else namespace wht = std; #endif // ######## GNURADIO BLOCK MESSAGE RECEVER ######### class GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx; using GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_sptr = gnss_shared_ptr; GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_sptr GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make(); class GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx : public gr::block { private: friend GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_sptr GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make(); void msg_handler_channel_events(const pmt::pmt_t msg); GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx(); public: int rx_message; ~GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx(); //!< Default destructor }; GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_sptr GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make() { return GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_sptr(new GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx()); } void GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx::msg_handler_channel_events(const pmt::pmt_t msg) { try { int64_t message = pmt::to_long(std::move(msg)); rx_message = message; } catch (const wht::bad_any_cast& e) { LOG(WARNING) << "msg_handler_channel_events Bad any_cast: " << e.what(); rx_message = 0; } } GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx::GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx() : gr::block("GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)) { this->message_port_register_in(pmt::mp("events")); this->set_msg_handler(pmt::mp("events"), #if HAS_GENERIC_LAMBDA [this](auto&& PH1) { msg_handler_channel_events(PH1); }); #else #if USE_BOOST_BIND_PLACEHOLDERS boost::bind(&GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx::msg_handler_channel_events, this, boost::placeholders::_1)); #else boost::bind(&GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx::msg_handler_channel_events, this, _1)); #endif #endif rx_message = 0; } GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx::~GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx() = default; // ########################################################### class GalileoE1PcpsAmbiguousAcquisitionTest : public ::testing::Test { protected: GalileoE1PcpsAmbiguousAcquisitionTest() { factory = std::make_shared(); config = std::make_shared(); item_size = sizeof(gr_complex); gnss_synchro = Gnss_Synchro(); doppler_max = 10000; doppler_step = 250; } ~GalileoE1PcpsAmbiguousAcquisitionTest() = default; void init(); void plot_grid(); gr::top_block_sptr top_block; std::shared_ptr factory; std::shared_ptr config; Gnss_Synchro gnss_synchro; size_t item_size; unsigned int doppler_max; unsigned int doppler_step; }; void GalileoE1PcpsAmbiguousAcquisitionTest::init() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = 'E'; std::string signal = "1B"; signal.copy(gnss_synchro.Signal, 2, 0); gnss_synchro.PRN = 1; config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition"); config->set_property("GNSS-SDR.internal_fs_sps", "4000000"); config->set_property("Acquisition_1B.item_type", "gr_complex"); config->set_property("Acquisition_1B.coherent_integration_time_ms", "4"); if (FLAGS_plot_acq_grid == true) { config->set_property("Acquisition_1B.dump", "true"); } else { config->set_property("Acquisition_1B.dump", "false"); } config->set_property("Acquisition_1B.dump_filename", "./tmp-acq-gal1/acquisition"); // config->set_property("Acquisition_1B.threshold", "2.5"); config->set_property("Acquisition_1B.pfa", "0.001"); config->set_property("Acquisition_1B.doppler_max", std::to_string(doppler_max)); config->set_property("Acquisition_1B.doppler_step", std::to_string(doppler_step)); config->set_property("Acquisition_1B.repeat_satellite", "false"); config->set_property("Acquisition_1B.cboc", "true"); } void GalileoE1PcpsAmbiguousAcquisitionTest::plot_grid() { // load the measured values std::string basename = "./tmp-acq-gal1/acquisition_E_1B"; auto sat = static_cast(gnss_synchro.PRN); auto samples_per_code = static_cast(round(4000000 / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS))); // !! Acquisition_Dump_Reader acq_dump(basename, sat, doppler_max, doppler_step, samples_per_code); if (!acq_dump.read_binary_acq()) { std::cout << "Error reading files\n"; } std::vector* doppler = &acq_dump.doppler; std::vector* samples = &acq_dump.samples; std::vector>* mag = &acq_dump.mag; const std::string gnuplot_executable(FLAGS_gnuplot_executable); if (gnuplot_executable.empty()) { std::cout << "WARNING: Although the flag plot_acq_grid has been set to TRUE,\n"; std::cout << "gnuplot has not been found in your system.\n"; std::cout << "Test results will not be plotted.\n"; } else { std::cout << "Plotting the acquisition grid. This can take a while...\n"; try { fs::path p(gnuplot_executable); fs::path dir = p.parent_path(); const std::string& gnuplot_path = dir.native(); Gnuplot::set_GNUPlotPath(gnuplot_path); Gnuplot g1("lines"); if (FLAGS_show_plots) { g1.showonscreen(); // window output } else { g1.disablescreen(); } g1.set_title("Galileo E1b/c signal acquisition for satellite PRN #" + std::to_string(gnss_synchro.PRN)); g1.set_xlabel("Doppler [Hz]"); g1.set_ylabel("Sample"); // g1.cmd("set view 60, 105, 1, 1"); g1.plot_grid3d(*doppler, *samples, *mag); g1.savetops("Galileo_E1_acq_grid"); g1.savetopdf("Galileo_E1_acq_grid"); } catch (const GnuplotException& ge) { std::cout << ge.what() << '\n'; } } std::string data_str = "./tmp-acq-gal1"; if (fs::exists(data_str)) { fs::remove_all(data_str); } } TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, Instantiate) { init(); std::shared_ptr acq_ = factory->GetBlock(config.get(), "Acquisition_1B", 1, 0); std::shared_ptr acquisition = std::dynamic_pointer_cast(acq_); } TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ConnectAndRun) { int fs_in = 4000000; int nsamples = 4 * fs_in; std::chrono::time_point start, end; std::chrono::duration elapsed_seconds(0); top_block = gr::make_top_block("Acquisition test"); std::shared_ptr> queue = std::make_shared>(); init(); std::shared_ptr acq_ = factory->GetBlock(config.get(), "Acquisition_1B", 1, 0); std::shared_ptr acquisition = std::dynamic_pointer_cast(acq_); auto msg_rx = GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make(); ASSERT_NO_THROW({ acquisition->connect(top_block); auto source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0)); auto valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue.get()); top_block->connect(source, 0, valve, 0); top_block->connect(valve, 0, acquisition->get_left_block(), 0); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting the blocks of acquisition test."; EXPECT_NO_THROW({ start = std::chrono::system_clock::now(); top_block->run(); // Start threads and wait end = std::chrono::system_clock::now(); elapsed_seconds = end - start; }) << "Failure running the top_block."; std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; } TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ValidationOfResults) { std::chrono::time_point start, end; std::chrono::duration elapsed_seconds(0); if (FLAGS_plot_acq_grid == true) { std::string data_str = "./tmp-acq-gal1"; if (fs::exists(data_str)) { fs::remove_all(data_str); } fs::create_directory(data_str); } double expected_delay_samples = 2920; // 18250; double expected_doppler_hz = -632; init(); top_block = gr::make_top_block("Acquisition test"); std::shared_ptr acq_ = factory->GetBlock(config.get(), "Acquisition_1B", 1, 0); std::shared_ptr acquisition = std::dynamic_pointer_cast(acq_); auto msg_rx = GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make(); ASSERT_NO_THROW({ acquisition->set_channel(gnss_synchro.Channel_ID); }) << "Failure setting channel."; ASSERT_NO_THROW({ acquisition->set_gnss_synchro(&gnss_synchro); }) << "Failure setting gnss_synchro."; ASSERT_NO_THROW({ acquisition->set_threshold(config->property("Acquisition_1B.threshold", 1e-9)); }) << "Failure setting threshold."; ASSERT_NO_THROW({ acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", doppler_max)); }) << "Failure setting doppler_max."; ASSERT_NO_THROW({ acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", doppler_step)); }) << "Failure setting doppler_step."; ASSERT_NO_THROW({ acquisition->connect(top_block); }) << "Failure connecting acquisition to the top_block."; ASSERT_NO_THROW({ std::string path = std::string(TEST_PATH); std::string file = path + "signal_samples/Galileo_E1_ID_1_Fs_4Msps_8ms.dat"; const char* file_name = file.c_str(); gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false); top_block->connect(file_source, 0, acquisition->get_left_block(), 0); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting the blocks of acquisition test."; acquisition->set_local_code(); acquisition->init(); acquisition->reset(); acquisition->set_state(1); EXPECT_NO_THROW({ start = std::chrono::system_clock::now(); top_block->run(); // Start threads and wait end = std::chrono::system_clock::now(); elapsed_seconds = end - start; }) << "Failure running the top_block."; uint64_t nsamples = gnss_synchro.Acq_samplestamp_samples; std::cout << "Acquired " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; std::cout << "Delay: " << gnss_synchro.Acq_delay_samples << '\n'; std::cout << "Doppler: " << gnss_synchro.Acq_doppler_hz << '\n'; double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples); auto delay_error_chips = static_cast(delay_error_samples * 1023 / 4000000); double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); EXPECT_LE(doppler_error_hz, 166) << "Doppler error exceeds the expected value: 166 Hz = 2/(3*integration period)"; EXPECT_LT(delay_error_chips, 0.175) << "Delay error exceeds the expected value: 0.175 chips"; if (FLAGS_plot_acq_grid == true) { plot_grid(); } }