/*! * \file galileo_e1_pcps_ambiguous_acquisition.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for * Galileo E1 Signals * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e1_pcps_ambiguous_acquisition.h" #include "Galileo_E1.h" #include "acq_conf.h" #include "configuration_interface.h" #include "galileo_e1_signal_processing.h" #include "gnss_sdr_flags.h" #include #include #include GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition( ConfigurationInterface* configuration, const std::string& role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { configuration_ = configuration; acq_parameters_.ms_per_code = 4; acq_parameters_.SetFromConfiguration(configuration_, role, GALILEO_E1_CODE_CHIP_RATE_CPS, GALILEO_E1_OPT_ACQ_FS_SPS); DLOG(INFO) << "role " << role; if (FLAGS_doppler_max != 0) { acq_parameters_.doppler_max = FLAGS_doppler_max; } doppler_max_ = acq_parameters_.doppler_max; doppler_step_ = acq_parameters_.doppler_step; item_type_ = acq_parameters_.item_type; item_size_ = acq_parameters_.it_size; fs_in_ = acq_parameters_.fs_in; acquire_pilot_ = configuration->property(role + ".acquire_pilot", false); code_length_ = static_cast(std::floor(static_cast(acq_parameters_.resampled_fs) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS))); vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1); code_ = std::vector>(vector_length_); sampled_ms_ = acq_parameters_.sampled_ms; acquisition_ = pcps_make_acquisition(acq_parameters_); DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; if (item_type_ == "cbyte") { cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); float_to_complex_ = gr::blocks::float_to_complex::make(); } channel_ = 0; threshold_ = 0.0; doppler_center_ = 0; gnss_synchro_ = nullptr; if (in_streams_ > 1) { LOG(ERROR) << "This implementation only supports one input stream"; } if (out_streams_ > 0) { LOG(ERROR) << "This implementation does not provide an output stream"; } } void GalileoE1PcpsAmbiguousAcquisition::stop_acquisition() { } void GalileoE1PcpsAmbiguousAcquisition::set_threshold(float threshold) { float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0); if (pfa == 0.0) { pfa = configuration_->property(role_ + ".pfa", 0.0); } if (pfa == 0.0) { threshold_ = threshold; } else { threshold_ = calculate_threshold(pfa); } DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_; acquisition_->set_threshold(threshold_); } void GalileoE1PcpsAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; acquisition_->set_doppler_max(doppler_max_); } void GalileoE1PcpsAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; acquisition_->set_doppler_step(doppler_step_); } void GalileoE1PcpsAmbiguousAcquisition::set_doppler_center(int doppler_center) { doppler_center_ = doppler_center; acquisition_->set_doppler_center(doppler_center_); } void GalileoE1PcpsAmbiguousAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; acquisition_->set_gnss_synchro(gnss_synchro_); } signed int GalileoE1PcpsAmbiguousAcquisition::mag() { return acquisition_->mag(); } void GalileoE1PcpsAmbiguousAcquisition::init() { acquisition_->init(); } void GalileoE1PcpsAmbiguousAcquisition::set_local_code() { bool cboc = configuration_->property( "Acquisition" + std::to_string(channel_) + ".cboc", false); std::vector> code(code_length_); if (acquire_pilot_ == true) { // set local signal generator to Galileo E1 pilot component (1C) std::array pilot_signal = {{'1', 'C', '\0'}}; if (acq_parameters_.use_automatic_resampler) { galileo_e1_code_gen_complex_sampled(code, pilot_signal, cboc, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0, false); } else { galileo_e1_code_gen_complex_sampled(code, pilot_signal, cboc, gnss_synchro_->PRN, fs_in_, 0, false); } } else { std::array Signal_{}; Signal_[0] = gnss_synchro_->Signal[0]; Signal_[1] = gnss_synchro_->Signal[1]; Signal_[2] = '\0'; if (acq_parameters_.use_automatic_resampler) { galileo_e1_code_gen_complex_sampled(code, Signal_, cboc, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0, false); } else { galileo_e1_code_gen_complex_sampled(code, Signal_, cboc, gnss_synchro_->PRN, fs_in_, 0, false); } } gsl::span code__span(code_.data(), vector_length_); for (unsigned int i = 0; i < sampled_ms_ / 4; i++) { std::copy_n(code.data(), code_length_, code__span.subspan(i * code_length_, code_length_).data()); } acquisition_->set_local_code(code_.data()); } void GalileoE1PcpsAmbiguousAcquisition::reset() { acquisition_->set_active(true); } void GalileoE1PcpsAmbiguousAcquisition::set_state(int state) { acquisition_->set_state(state); } float GalileoE1PcpsAmbiguousAcquisition::calculate_threshold(float pfa) { unsigned int frequency_bins = 0; for (int doppler = static_cast(-doppler_max_); doppler <= static_cast(doppler_max_); doppler += doppler_step_) { frequency_bins++; } DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa; unsigned int ncells = vector_length_ * frequency_bins; double exponent = 1 / static_cast(ncells); double val = pow(1.0 - pfa, exponent); auto lambda = static_cast(vector_length_); boost::math::exponential_distribution mydist(lambda); auto threshold = static_cast(quantile(mydist, val)); return threshold; } void GalileoE1PcpsAmbiguousAcquisition::connect(gr::top_block_sptr top_block) { if (item_type_ == "gr_complex") { // nothing to connect } else if (item_type_ == "cshort") { // nothing to connect } else if (item_type_ == "cbyte") { // Since a byte-based acq implementation is not available, // we just convert cshorts to gr_complex top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(float_to_complex_, 0, acquisition_, 0); } else { LOG(WARNING) << item_type_ << " unknown acquisition item type"; } } void GalileoE1PcpsAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block) { if (item_type_ == "gr_complex") { // nothing to disconnect } else if (item_type_ == "cshort") { // nothing to disconnect } else if (item_type_ == "cbyte") { top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(float_to_complex_, 0, acquisition_, 0); } else { LOG(WARNING) << item_type_ << " unknown acquisition item type"; } } gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_left_block() { if (item_type_ == "gr_complex") { return acquisition_; } if (item_type_ == "cshort") { return acquisition_; } if (item_type_ == "cbyte") { return cbyte_to_float_x2_; } LOG(WARNING) << item_type_ << " unknown acquisition item type"; return nullptr; } gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_right_block() { return acquisition_; } void GalileoE1PcpsAmbiguousAcquisition::set_resampler_latency(uint32_t latency_samples) { acquisition_->set_resampler_latency(latency_samples); }