/*! * \file acq_performance_test.cc * \brief This class implements an acquisition performance test * \author Carles Fernandez-Prades, 2018. cfernandez(at)cttc.cat * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_pcps_acquisition.h" #include "gps_l1_ca_pcps_acquisition_fine_doppler.h" #include "galileo_e1_pcps_ambiguous_acquisition.h" #include "galileo_e5a_pcps_acquisition.h" #include "glonass_l1_ca_pcps_acquisition.h" #include "glonass_l2_ca_pcps_acquisition.h" #include "gps_l2_m_pcps_acquisition.h" #include "gps_l5i_pcps_acquisition.h" #include "in_memory_configuration.h" #include "file_configuration.h" #include "gnss_sdr_valve.h" #include "acquisition_dump_reader.h" #include "display.h" #include "gnuplot_i.h" #include "signal_generator_flags.h" #include "test_flags.h" #include "tracking_true_obs_reader.h" #include "true_observables_reader.h" #include #include #include #include #include DEFINE_string(config_file_ptest, std::string(""), "File containing alternative configuration parameters for the acquisition performance test."); DEFINE_string(acq_test_input_file, std::string(""), "File containing raw signal data, must be in int8_t format. The signal generator will not be used."); DEFINE_string(acq_test_implementation, std::string("GPS_L1_CA_PCPS_Acquisition"), "Acquisition block implementation under test. Alternatives: GPS_L1_CA_PCPS_Acquisition, GPS_L1_CA_PCPS_Acquisition_Fine_Doppler, Galileo_E1_PCPS_Ambiguous_Acquisition, GLONASS_L1_CA_PCPS_Acquisition, GLONASS_L2_CA_PCPS_Acquisition, GPS_L2_M_PCPS_Acquisition, Galileo_E5a_Pcps_Acquisition, GPS_L5i_PCPS_Acquisition"); DEFINE_int32(acq_test_doppler_max, 5000, "Maximum Doppler, in Hz"); DEFINE_int32(acq_test_doppler_step, 125, "Doppler step, in Hz."); DEFINE_int32(acq_test_coherent_time_ms, 1, "Acquisition coherent time, in ms"); DEFINE_int32(acq_test_max_dwells, 1, "Number of non-coherent integrations."); DEFINE_bool(acq_test_use_CFAR_algorithm, true, "Use CFAR algorithm."); DEFINE_bool(acq_test_bit_transition_flag, false, "Bit transition flag."); DEFINE_bool(acq_test_make_two_steps, false, "Perform second step in a thinner grid."); DEFINE_int32(acq_test_second_nbins, 4, "If --acq_test_make_two_steps is set to true, this parameter sets the number of bins done in the acquisition refinement stage."); DEFINE_int32(acq_test_second_doppler_step, 10, "If --acq_test_make_two_steps is set to true, this parameter sets the Doppler step applied in the acquisition refinement stage, in Hz."); DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration, in s"); DEFINE_int32(acq_test_num_meas, 0, "Number of measurements per run. 0 means the complete file."); DEFINE_double(acq_test_cn0_init, 30.0, "Initial CN0, in dBHz."); DEFINE_double(acq_test_cn0_final, 45.0, "Final CN0, in dBHz."); DEFINE_double(acq_test_cn0_step, 3.0, "CN0 step, in dB."); DEFINE_double(acq_test_threshold_init, 3.0, "Initial acquisition threshold"); DEFINE_double(acq_test_threshold_final, 4.0, "Final acquisition threshold"); DEFINE_double(acq_test_threshold_step, 0.5, "Acquisition threshold step"); DEFINE_double(acq_test_pfa_init, 1e-5, "Set initial threshold via probability of false alarm. Disable with -1.0"); DEFINE_int32(acq_test_PRN, 1, "PRN number of a present satellite"); DEFINE_int32(acq_test_fake_PRN, 33, "PRN number of a non-present satellite"); DEFINE_int32(acq_test_iterations, 1, "Number of iterations (same signal, different noise realization)"); DEFINE_bool(plot_acq_test, false, "Plots results with gnuplot, if available"); DEFINE_int32(acq_test_skiphead, 0, "Number of samples to skip in the input file"); // ######## GNURADIO BLOCK MESSAGE RECEVER ######### class AcqPerfTest_msg_rx; typedef boost::shared_ptr AcqPerfTest_msg_rx_sptr; AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue& queue); class AcqPerfTest_msg_rx : public gr::block { private: friend AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue& queue); void msg_handler_events(pmt::pmt_t msg); AcqPerfTest_msg_rx(concurrent_queue& queue); concurrent_queue& channel_internal_queue; public: int rx_message; ~AcqPerfTest_msg_rx(); }; AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue& queue) { return AcqPerfTest_msg_rx_sptr(new AcqPerfTest_msg_rx(queue)); } void AcqPerfTest_msg_rx::msg_handler_events(pmt::pmt_t msg) { try { int64_t message = pmt::to_long(msg); rx_message = message; channel_internal_queue.push(rx_message); } catch (boost::bad_any_cast& e) { LOG(WARNING) << "msg_handler_telemetry Bad any cast!"; rx_message = 0; } } AcqPerfTest_msg_rx::AcqPerfTest_msg_rx(concurrent_queue& queue) : gr::block("AcqPerfTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)), channel_internal_queue(queue) { this->message_port_register_in(pmt::mp("events")); this->set_msg_handler(pmt::mp("events"), boost::bind(&AcqPerfTest_msg_rx::msg_handler_events, this, _1)); rx_message = 0; } AcqPerfTest_msg_rx::~AcqPerfTest_msg_rx() { } // ----------------------------------------- class AcquisitionPerformanceTest : public ::testing::Test { protected: AcquisitionPerformanceTest() { config = std::make_shared(); item_size = sizeof(gr_complex); gnss_synchro = Gnss_Synchro(); doppler_max = static_cast(FLAGS_acq_test_doppler_max); doppler_step = static_cast(FLAGS_acq_test_doppler_step); stop = false; if (FLAGS_acq_test_input_file.empty()) { cn0_vector.push_back(FLAGS_acq_test_cn0_init); double aux = FLAGS_acq_test_cn0_init + FLAGS_acq_test_cn0_step; while (aux <= FLAGS_acq_test_cn0_final) { cn0_vector.push_back(aux); aux = aux + FLAGS_acq_test_cn0_step; } } else { cn0_vector = {0.0}; } if (implementation.compare("GPS_L1_CA_PCPS_Acquisition") == 0) { signal_id = "1C"; system_id = 'G'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; min_integration_ms = 1; } else if (implementation.compare("GPS_L1_CA_PCPS_Acquisition_Fine_Doppler") == 0) { signal_id = "1C"; system_id = 'G'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; min_integration_ms = 1; } else if (implementation.compare("Galileo_E1_PCPS_Ambiguous_Acquisition") == 0) { signal_id = "1B"; system_id = 'E'; min_integration_ms = 4; if (FLAGS_acq_test_coherent_time_ms == 1) { coherent_integration_time_ms = 4; } else { coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; } } else if (implementation.compare("GLONASS_L1_CA_PCPS_Acquisition") == 0) { signal_id = "1G"; system_id = 'R'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; min_integration_ms = 1; } else if (implementation.compare("GLONASS_L2_CA_PCPS_Acquisition") == 0) { signal_id = "2G"; system_id = 'R'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; min_integration_ms = 1; } else if (implementation.compare("GPS_L2_M_PCPS_Acquisition") == 0) { signal_id = "2S"; system_id = 'G'; if (FLAGS_acq_test_coherent_time_ms == 1) { coherent_integration_time_ms = 20; } else { coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; } min_integration_ms = 20; } else if (implementation.compare("Galileo_E5a_Pcps_Acquisition") == 0) { signal_id = "5X"; system_id = 'E'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; min_integration_ms = 1; } else if (implementation.compare("GPS_L5i_PCPS_Acquisition") == 0) { signal_id = "L5"; system_id = 'G'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; } else { signal_id = "1C"; system_id = 'G'; coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms; min_integration_ms = 1; } init(); if (FLAGS_acq_test_pfa_init > 0.0) { pfa_vector.push_back(FLAGS_acq_test_pfa_init); float aux = 1.0; while ((FLAGS_acq_test_pfa_init * std::pow(10, aux)) < 1) { pfa_vector.push_back(FLAGS_acq_test_pfa_init * std::pow(10, aux)); aux = aux + 1.0; } pfa_vector.push_back(1.0); } else { float aux = static_cast(FLAGS_acq_test_threshold_init); pfa_vector.push_back(aux); aux = aux + static_cast(FLAGS_acq_test_threshold_step); while (aux <= static_cast(FLAGS_acq_test_threshold_final)) { pfa_vector.push_back(aux); aux = aux + static_cast(FLAGS_acq_test_threshold_step); } } num_thresholds = pfa_vector.size(); int aux2 = ((generated_signal_duration_s * 1000 - (FLAGS_acq_test_coherent_time_ms * FLAGS_acq_test_max_dwells)) / (FLAGS_acq_test_coherent_time_ms * FLAGS_acq_test_max_dwells)); if ((FLAGS_acq_test_num_meas > 0) and (FLAGS_acq_test_num_meas < aux2)) { num_of_measurements = static_cast(FLAGS_acq_test_num_meas); } else { num_of_measurements = static_cast(aux2); } Pd.resize(cn0_vector.size()); for (int i = 0; i < static_cast(cn0_vector.size()); i++) Pd[i].reserve(num_thresholds); Pfa.resize(cn0_vector.size()); for (int i = 0; i < static_cast(cn0_vector.size()); i++) Pfa[i].reserve(num_thresholds); Pd_correct.resize(cn0_vector.size()); for (int i = 0; i < static_cast(cn0_vector.size()); i++) Pd_correct[i].reserve(num_thresholds); } ~AcquisitionPerformanceTest() { } std::vector cn0_vector; std::vector pfa_vector; int N_iterations = FLAGS_acq_test_iterations; void init(); int configure_generator(double cn0); int generate_signal(); int configure_receiver(double cn0, float pfa, unsigned int iter); void start_queue(); void wait_message(); void process_message(); void stop_queue(); int run_receiver(); int count_executions(const std::string& basename, unsigned int sat); void check_results(); void plot_results(); concurrent_queue channel_internal_queue; gr::msg_queue::sptr queue; gr::top_block_sptr top_block; std::shared_ptr acquisition; std::shared_ptr config; std::shared_ptr config_f; Gnss_Synchro gnss_synchro; size_t item_size; unsigned int doppler_max; unsigned int doppler_step; bool stop; int message; boost::thread ch_thread; std::string implementation = FLAGS_acq_test_implementation; const double baseband_sampling_freq = static_cast(FLAGS_fs_gen_sps); int coherent_integration_time_ms; const int in_acquisition = 1; const int dump_channel = 0; int generated_signal_duration_s = FLAGS_acq_test_signal_duration_s; unsigned int num_of_measurements; unsigned int measurement_counter = 0; unsigned int observed_satellite = FLAGS_acq_test_PRN; std::string path_str = "./acq-perf-test"; int num_thresholds; unsigned int min_integration_ms; std::vector> Pd; std::vector> Pfa; std::vector> Pd_correct; std::string signal_id; private: std::string generator_binary; std::string p1; std::string p2; std::string p3; std::string p4; std::string p5; std::string p6; std::string filename_rinex_obs = FLAGS_filename_rinex_obs; std::string filename_raw_data = FLAGS_filename_raw_data; char system_id; double compute_stdev_precision(const std::vector& vec); double compute_stdev_accuracy(const std::vector& vec, double ref); }; void AcquisitionPerformanceTest::init() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = system_id; std::string signal = signal_id; signal.copy(gnss_synchro.Signal, 2, 0); gnss_synchro.PRN = observed_satellite; message = 0; measurement_counter = 0; } void AcquisitionPerformanceTest::start_queue() { stop = false; ch_thread = boost::thread(&AcquisitionPerformanceTest::wait_message, this); } void AcquisitionPerformanceTest::wait_message() { while (!stop) { channel_internal_queue.wait_and_pop(message); process_message(); } } void AcquisitionPerformanceTest::process_message() { measurement_counter++; acquisition->reset(); acquisition->set_state(1); std::cout << "Progress: " << round(static_cast(measurement_counter) / static_cast(num_of_measurements) * 100.0) << "% \r" << std::flush; if (measurement_counter == num_of_measurements) { stop_queue(); top_block->stop(); } } void AcquisitionPerformanceTest::stop_queue() { stop = true; } int AcquisitionPerformanceTest::configure_generator(double cn0) { // Configure signal generator generator_binary = FLAGS_generator_binary; p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file; if (FLAGS_dynamic_position.empty()) { p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(std::min(generated_signal_duration_s * 10, 3000)); } else { p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position); } p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps] p6 = std::string("-CN0_dBHz=") + std::to_string(cn0); return 0; } int AcquisitionPerformanceTest::generate_signal() { pid_t wait_result; int child_status; std::cout << "Generating signal for " << p6 << "..." << std::endl; char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], &p6[0], NULL}; int pid; if ((pid = fork()) == -1) perror("fork error"); else if (pid == 0) { execv(&generator_binary[0], parmList); std::cout << "Return not expected. Must be an execv error." << std::endl; std::terminate(); } wait_result = waitpid(pid, &child_status, 0); if (wait_result == -1) perror("waitpid error"); return 0; } int AcquisitionPerformanceTest::configure_receiver(double cn0, float pfa, unsigned int iter) { if (FLAGS_config_file_ptest.empty()) { config = std::make_shared(); const int sampling_rate_internal = baseband_sampling_freq; config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_rate_internal)); // Set Acquisition config->set_property("Acquisition.implementation", implementation); config->set_property("Acquisition.item_type", "gr_complex"); config->set_property("Acquisition.doppler_max", std::to_string(doppler_max)); config->set_property("Acquisition.doppler_min", std::to_string(-doppler_max)); config->set_property("Acquisition.doppler_step", std::to_string(doppler_step)); config->set_property("Acquisition.threshold", std::to_string(pfa)); //if (FLAGS_acq_test_pfa_init > 0.0) config->supersede_property("Acquisition.pfa", std::to_string(pfa)); if (FLAGS_acq_test_pfa_init > 0.0) { config->supersede_property("Acquisition.pfa", std::to_string(pfa)); } if (FLAGS_acq_test_use_CFAR_algorithm) { config->set_property("Acquisition.use_CFAR_algorithm", "true"); } else { config->set_property("Acquisition.use_CFAR_algorithm", "false"); } config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms)); if (FLAGS_acq_test_bit_transition_flag) { config->set_property("Acquisition.bit_transition_flag", "true"); } else { config->set_property("Acquisition.bit_transition_flag", "false"); } config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_acq_test_max_dwells)); config->set_property("Acquisition.repeat_satellite", "true"); config->set_property("Acquisition.blocking", "true"); if (FLAGS_acq_test_make_two_steps) { config->set_property("Acquisition.make_two_steps", "true"); config->set_property("Acquisition.second_nbins", std::to_string(FLAGS_acq_test_second_nbins)); config->set_property("Acquisition.second_doppler_step", std::to_string(FLAGS_acq_test_second_doppler_step)); } else { config->set_property("Acquisition.make_two_steps", "false"); } config->set_property("Acquisition.dump", "true"); std::string dump_file = path_str + std::string("/acquisition_") + std::to_string(cn0) + "_" + std::to_string(iter) + "_" + std::to_string(pfa); config->set_property("Acquisition.dump_filename", dump_file); config->set_property("Acquisition.dump_channel", std::to_string(dump_channel)); config->set_property("Acquisition.blocking_on_standby", "true"); config_f = 0; } else { config_f = std::make_shared(FLAGS_config_file_ptest); config = 0; } return 0; } int AcquisitionPerformanceTest::run_receiver() { std::string file; if (FLAGS_acq_test_input_file.empty()) { file = "./" + filename_raw_data; } else { file = FLAGS_acq_test_input_file; } const char* file_name = file.c_str(); gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false); gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make(); top_block = gr::make_top_block("Acquisition test"); boost::shared_ptr msg_rx = AcqPerfTest_msg_rx_make(channel_internal_queue); gr::blocks::skiphead::sptr skiphead = gr::blocks::skiphead::make(sizeof(gr_complex), FLAGS_acq_test_skiphead); queue = gr::msg_queue::make(0); gnss_synchro = Gnss_Synchro(); init(); int nsamples = floor(config->property("GNSS-SDR.internal_fs_sps", 2000000) * generated_signal_duration_s); boost::shared_ptr valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue); if (implementation.compare("GPS_L1_CA_PCPS_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("GPS_L1_CA_PCPS_Acquisition_Fine_Doppler") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("Galileo_E1_PCPS_Ambiguous_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("GLONASS_L1_CA_PCPS_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("GLONASS_L2_CA_PCPS_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("GPS_L2_M_PCPS_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("Galileo_E5a_Pcps_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else if (implementation.compare("GPS_L5i_PCPS_Acquisition") == 0) { acquisition = std::make_shared(config.get(), "Acquisition", 1, 0); } else { bool aux = false; EXPECT_EQ(true, aux); } acquisition->set_gnss_synchro(&gnss_synchro); acquisition->set_channel(0); acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500)); acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); acquisition->init(); acquisition->set_local_code(); acquisition->set_state(1); // Ensure that acquisition starts at the first sample acquisition->connect(top_block); acquisition->reset(); top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0); top_block->connect(gr_interleaved_char_to_complex, 0, skiphead, 0); top_block->connect(skiphead, 0, valve, 0); top_block->connect(valve, 0, acquisition->get_left_block(), 0); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); start_queue(); top_block->run(); // Start threads and wait #ifdef OLD_BOOST ch_thread.timed_join(boost::posix_time::seconds(1)); #endif #ifndef OLD_BOOST ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50)); #endif return 0; } int AcquisitionPerformanceTest::count_executions(const std::string& basename, unsigned int sat) { FILE* fp; std::string argum2 = std::string("/usr/bin/find ") + path_str + std::string(" -maxdepth 1 -name ") + basename.substr(path_str.length() + 1, basename.length() - path_str.length()) + std::string("* | grep sat_") + std::to_string(sat) + std::string(" | wc -l"); char buffer[1024]; fp = popen(&argum2[0], "r"); int num_executions = 1; if (fp == NULL) { std::cout << "Failed to run command: " << argum2 << std::endl; return 0; } while (fgets(buffer, sizeof(buffer), fp) != NULL) { std::string aux = std::string(buffer); EXPECT_EQ(aux.empty(), false); num_executions = std::stoi(aux); } pclose(fp); return num_executions; } void AcquisitionPerformanceTest::plot_results() { if (FLAGS_plot_acq_test == true) { const std::string gnuplot_executable(FLAGS_gnuplot_executable); if (gnuplot_executable.empty()) { std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE," << std::endl; std::cout << "gnuplot has not been found in your system." << std::endl; std::cout << "Test results will not be plotted." << std::endl; } else { try { boost::filesystem::path p(gnuplot_executable); boost::filesystem::path dir = p.parent_path(); std::string gnuplot_path = dir.native(); Gnuplot::set_GNUPlotPath(gnuplot_path); Gnuplot g1("linespoints"); if (FLAGS_show_plots) { g1.showonscreen(); // window output } else { g1.disablescreen(); } g1.cmd("set font \"Times,18\""); g1.set_title("Receiver Operating Characteristic for GPS L1 C/A acquisition"); g1.cmd("set label 1 \"" + std::string("Coherent integration time: ") + std::to_string(config->property("Acquisition.coherent_integration_time_ms", 1)) + " ms, Non-coherent integrations: " + std::to_string(config->property("Acquisition.max_dwells", 1)) + " \" at screen 0.12, 0.83 font \"Times,16\""); g1.cmd("set logscale x"); g1.cmd("set yrange [0:1]"); g1.cmd("set xrange[0.0001:1]"); g1.cmd("set grid mxtics"); g1.cmd("set grid ytics"); g1.set_xlabel("Pfa"); g1.set_ylabel("Pd"); g1.set_grid(); g1.cmd("show grid"); for (int i = 0; i < static_cast(cn0_vector.size()); i++) { std::vector Pd_i; std::vector Pfa_i; for (int k = 0; k < num_thresholds; k++) { Pd_i.push_back(Pd[i][k]); Pfa_i.push_back(Pfa[i][k]); } g1.plot_xy(Pfa_i, Pd_i, "CN0 = " + std::to_string(static_cast(cn0_vector[i])) + " dBHz"); } g1.set_legend(); g1.savetops("ROC"); g1.savetopdf("ROC", 18); Gnuplot g2("linespoints"); if (FLAGS_show_plots) { g2.showonscreen(); // window output } else { g2.disablescreen(); } g2.cmd("set font \"Times,18\""); g2.set_title("Receiver Operating Characteristic for GPS L1 C/A valid acquisition"); g2.cmd("set label 1 \"" + std::string("Coherent integration time: ") + std::to_string(config->property("Acquisition.coherent_integration_time_ms", 1)) + " ms, Non-coherent integrations: " + std::to_string(config->property("Acquisition.max_dwells", 1)) + " \" at screen 0.12, 0.83 font \"Times,16\""); g2.cmd("set logscale x"); g2.cmd("set yrange [0:1]"); g2.cmd("set xrange[0.0001:1]"); g2.cmd("set grid mxtics"); g2.cmd("set grid ytics"); g2.set_xlabel("Pfa"); g2.set_ylabel("Valid Pd"); g2.set_grid(); g2.cmd("show grid"); for (int i = 0; i < static_cast(cn0_vector.size()); i++) { std::vector Pd_i_correct; std::vector Pfa_i; for (int k = 0; k < num_thresholds; k++) { Pd_i_correct.push_back(Pd_correct[i][k]); Pfa_i.push_back(Pfa[i][k]); } g2.plot_xy(Pfa_i, Pd_i_correct, "CN0 = " + std::to_string(static_cast(cn0_vector[i])) + " dBHz"); } g2.set_legend(); g2.savetops("ROC-valid-detection"); g2.savetopdf("ROC-valid-detection", 18); } catch (const GnuplotException& ge) { std::cout << ge.what() << std::endl; } } } } TEST_F(AcquisitionPerformanceTest, ROC) { tracking_true_obs_reader true_trk_data; if (boost::filesystem::exists(path_str)) { boost::filesystem::remove_all(path_str); } boost::system::error_code ec; ASSERT_TRUE(boost::filesystem::create_directory(path_str, ec)) << "Could not create the " << path_str << " folder."; unsigned int cn0_index = 0; for (std::vector::const_iterator it = cn0_vector.cbegin(); it != cn0_vector.cend(); ++it) { std::vector meas_Pd_; std::vector meas_Pd_correct_; std::vector meas_Pfa_; if (FLAGS_acq_test_input_file.empty()) std::cout << "Execution for CN0 = " << *it << " dB-Hz" << std::endl; // Do N_iterations of the experiment for (int pfa_iter = 0; pfa_iter < static_cast(pfa_vector.size()); pfa_iter++) { if (FLAGS_acq_test_pfa_init > 0.0) { std::cout << "Setting threshold for Pfa = " << pfa_vector[pfa_iter] << std::endl; } else { std::cout << "Setting threshold to " << pfa_vector[pfa_iter] << std::endl; } // Configure the signal generator if (FLAGS_acq_test_input_file.empty()) configure_generator(*it); for (int iter = 0; iter < N_iterations; iter++) { // Generate signal raw signal samples and observations RINEX file if (FLAGS_acq_test_input_file.empty()) generate_signal(); for (unsigned k = 0; k < 2; k++) { if (k == 0) { observed_satellite = FLAGS_acq_test_PRN; } else { observed_satellite = FLAGS_acq_test_fake_PRN; } init(); // Configure the receiver configure_receiver(*it, pfa_vector[pfa_iter], iter); // Run it run_receiver(); // count executions std::string basename = path_str + std::string("/acquisition_") + std::to_string(*it) + "_" + std::to_string(iter) + "_" + std::to_string(pfa_vector[pfa_iter]) + "_" + gnss_synchro.System + "_" + signal_id; int num_executions = count_executions(basename, observed_satellite); // Read measured data int ch = config->property("Acquisition.dump_channel", 0); arma::vec meas_timestamp_s = arma::zeros(num_executions, 1); arma::vec meas_doppler = arma::zeros(num_executions, 1); arma::vec positive_acq = arma::zeros(num_executions, 1); arma::vec meas_acq_delay_chips = arma::zeros(num_executions, 1); double coh_time_ms = config->property("Acquisition.coherent_integration_time_ms", 1); std::cout << "Num executions: " << num_executions << std::endl; unsigned int fft_size = 0; unsigned int d_consumed_samples = coh_time_ms * config->property("GNSS-SDR.internal_fs_sps", 0) * 0.001; // * (config->property("Acquisition.bit_transition_flag", false) ? 2 : 1); if (coh_time_ms == min_integration_ms) { fft_size = d_consumed_samples; } else { fft_size = d_consumed_samples * 2; } for (int execution = 1; execution <= num_executions; execution++) { acquisition_dump_reader acq_dump(basename, observed_satellite, config->property("Acquisition.doppler_max", 0), config->property("Acquisition.doppler_step", 0), fft_size, ch, execution); acq_dump.read_binary_acq(); if (acq_dump.positive_acq) { //std::cout << "Meas acq_delay_samples: " << acq_dump.acq_delay_samples << " chips: " << acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS) << std::endl; meas_timestamp_s(execution - 1) = acq_dump.sample_counter / baseband_sampling_freq; meas_doppler(execution - 1) = acq_dump.acq_doppler_hz; meas_acq_delay_chips(execution - 1) = acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS); positive_acq(execution - 1) = acq_dump.positive_acq; } else { //std::cout << "Failed acquisition." << std::endl; meas_timestamp_s(execution - 1) = arma::datum::inf; meas_doppler(execution - 1) = arma::datum::inf; meas_acq_delay_chips(execution - 1) = arma::datum::inf; positive_acq(execution - 1) = acq_dump.positive_acq; } } // Read reference data std::string true_trk_file = std::string("./gps_l1_ca_obs_prn"); true_trk_file.append(std::to_string(observed_satellite)); true_trk_file.append(".dat"); true_trk_data.close_obs_file(); true_trk_data.open_obs_file(true_trk_file); // load the true values int64_t n_true_epochs = true_trk_data.num_epochs(); arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1); arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1); arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1); arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1); arma::vec true_tow_s = arma::zeros(n_true_epochs, 1); int64_t epoch_counter = 0; int num_clean_executions = 0; while (true_trk_data.read_binary_obs()) { true_timestamp_s(epoch_counter) = true_trk_data.signal_timestamp_s; true_acc_carrier_phase_cycles(epoch_counter) = true_trk_data.acc_carrier_phase_cycles; true_Doppler_Hz(epoch_counter) = true_trk_data.doppler_l1_hz; true_prn_delay_chips(epoch_counter) = GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips; true_tow_s(epoch_counter) = true_trk_data.tow; epoch_counter++; //std::cout << "True PRN_Delay chips = " << GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips << " at " << true_trk_data.signal_timestamp_s << std::endl; } // Process results arma::vec clean_doppler_estimation_error; arma::vec clean_delay_estimation_error; if (epoch_counter > 2) { arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1); arma::vec true_interpolated_prn_delay_chips = arma::zeros(num_executions, 1); interp1(true_timestamp_s, true_Doppler_Hz, meas_timestamp_s, true_interpolated_doppler); interp1(true_timestamp_s, true_prn_delay_chips, meas_timestamp_s, true_interpolated_prn_delay_chips); arma::vec doppler_estimation_error = true_interpolated_doppler - meas_doppler; arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - (meas_acq_delay_chips - ((1.0 / baseband_sampling_freq) / GPS_L1_CA_CHIP_PERIOD)); // compensate 1 sample delay // Cut measurements without reference for (int i = 0; i < num_executions; i++) { if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i))) { num_clean_executions++; } } clean_doppler_estimation_error = arma::zeros(num_clean_executions, 1); clean_delay_estimation_error = arma::zeros(num_clean_executions, 1); num_clean_executions = 0; for (int i = 0; i < num_executions; i++) { if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i))) { clean_doppler_estimation_error(num_clean_executions) = doppler_estimation_error(i); clean_delay_estimation_error(num_clean_executions) = delay_estimation_error(i); num_clean_executions++; } } /* std::cout << "Doppler estimation error [Hz]: "; for (int i = 0; i < num_executions - 1; i++) { std::cout << doppler_estimation_error(i) << " "; } std::cout << std::endl; std::cout << "Delay estimation error [chips]: "; for (int i = 0; i < num_executions - 1; i++) { std::cout << delay_estimation_error(i) << " "; } std::cout << std::endl; */ } if (k == 0) { double detected = arma::accu(positive_acq); double computed_Pd = detected / static_cast(num_executions); if (num_executions > 0) { meas_Pd_.push_back(computed_Pd); } else { meas_Pd_.push_back(0.0); } std::cout << TEXT_BOLD_BLACK << "Probability of detection for channel=" << ch << ", CN0=" << *it << " dBHz" << ": " << (num_executions > 0 ? computed_Pd : 0.0) << TEXT_RESET << std::endl; } if (num_clean_executions > 0) { arma::vec correct_acq = arma::zeros(num_executions, 1); double correctly_detected = 0.0; for (int i = 0; i < num_clean_executions - 1; i++) { if (abs(clean_delay_estimation_error(i)) < 0.5 and abs(clean_doppler_estimation_error(i)) < static_cast(config->property("Acquisition.doppler_step", 1)) / 2.0) { correctly_detected = correctly_detected + 1.0; } } double computed_Pd_correct = correctly_detected / static_cast(num_clean_executions); meas_Pd_correct_.push_back(computed_Pd_correct); std::cout << TEXT_BOLD_BLACK << "Probability of correct detection for channel=" << ch << ", CN0=" << *it << " dBHz" << ": " << computed_Pd_correct << TEXT_RESET << std::endl; } else { //std::cout << "No reference data has been found. Maybe a non-present satellite?" << num_executions << std::endl; if (k == 1) { double wrongly_detected = arma::accu(positive_acq); double computed_Pfa = wrongly_detected / static_cast(num_executions); if (num_executions > 0) { meas_Pfa_.push_back(computed_Pfa); } else { meas_Pfa_.push_back(0.0); } std::cout << TEXT_BOLD_BLACK << "Probability of false alarm for channel=" << ch << ", CN0=" << *it << " dBHz" << ": " << (num_executions > 0 ? computed_Pfa : 0.0) << TEXT_RESET << std::endl; } } true_trk_data.restart(); } } true_trk_data.close_obs_file(); float sum_pd = static_cast(std::accumulate(meas_Pd_.begin(), meas_Pd_.end(), 0.0)); float sum_pd_correct = static_cast(std::accumulate(meas_Pd_correct_.begin(), meas_Pd_correct_.end(), 0.0)); float sum_pfa = static_cast(std::accumulate(meas_Pfa_.begin(), meas_Pfa_.end(), 0.0)); if (meas_Pd_.size() > 0 and meas_Pfa_.size() > 0) { Pd[cn0_index][pfa_iter] = sum_pd / static_cast(meas_Pd_.size()); Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast(meas_Pfa_.size()); } else { if (meas_Pd_.size() > 0) { Pd[cn0_index][pfa_iter] = sum_pd / static_cast(meas_Pd_.size()); } else { Pd[cn0_index][pfa_iter] = 0.0; } if (meas_Pfa_.size() > 0) { Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast(meas_Pfa_.size()); } else { Pfa[cn0_index][pfa_iter] = 0.0; } } if (meas_Pd_correct_.size() > 0) { Pd_correct[cn0_index][pfa_iter] = sum_pd_correct / static_cast(meas_Pd_correct_.size()); } else { Pd_correct[cn0_index][pfa_iter] = 0.0; } meas_Pd_.clear(); meas_Pfa_.clear(); meas_Pd_correct_.clear(); } cn0_index++; } // Compute results unsigned int aux_index = 0; for (std::vector::const_iterator it = cn0_vector.cbegin(); it != cn0_vector.cend(); ++it) { std::cout << "Results for CN0 = " << *it << " dBHz:" << std::endl; std::cout << "Pd = "; for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++) { std::cout << Pd[aux_index][pfa_iter] << " "; } std::cout << std::endl; std::cout << "Pd_correct = "; for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++) { std::cout << Pd_correct[aux_index][pfa_iter] << " "; } std::cout << std::endl; std::cout << "Pfa = "; for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++) { std::cout << Pfa[aux_index][pfa_iter] << " "; } std::cout << std::endl; aux_index++; } plot_results(); }