/*! * \file pcps_quicksync_acquisition_cc.cc * \brief This class implements a Parallel Code Phase Search Acquisition * \author Damian Miralles Sanchez, 2014. dmiralles2009(at)gmail.com * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "pcps_quicksync_acquisition_cc.h" #include "GPS_L1_CA.h" #include #include #include #include #include #include #include #include pcps_quicksync_acquisition_cc_sptr pcps_quicksync_make_acquisition_cc( uint32_t folding_factor, uint32_t sampled_ms, uint32_t max_dwells, uint32_t doppler_max, int64_t fs_in, int32_t samples_per_ms, int32_t samples_per_code, bool bit_transition_flag, bool dump, std::string dump_filename) { return pcps_quicksync_acquisition_cc_sptr( new pcps_quicksync_acquisition_cc( folding_factor, sampled_ms, max_dwells, doppler_max, fs_in, samples_per_ms, samples_per_code, bit_transition_flag, dump, std::move(dump_filename))); } pcps_quicksync_acquisition_cc::pcps_quicksync_acquisition_cc( uint32_t folding_factor, uint32_t sampled_ms, uint32_t max_dwells, uint32_t doppler_max, int64_t fs_in, int32_t samples_per_ms, int32_t samples_per_code, bool bit_transition_flag, bool dump, std::string dump_filename) : gr::block("pcps_quicksync_acquisition_cc", gr::io_signature::make(1, 1, (sizeof(gr_complex) * sampled_ms * samples_per_ms)), gr::io_signature::make(0, 0, (sizeof(gr_complex) * sampled_ms * samples_per_ms))) { this->message_port_register_out(pmt::mp("events")); d_sample_counter = 0ULL; // SAMPLE COUNTER d_active = false; d_state = 0; d_fs_in = fs_in; d_samples_per_ms = samples_per_ms; d_samples_per_code = samples_per_code; d_sampled_ms = sampled_ms; d_max_dwells = max_dwells; d_well_count = 0; d_doppler_max = doppler_max; d_mag = 0; d_input_power = 0.0; d_num_doppler_bins = 0; d_bit_transition_flag = bit_transition_flag; d_folding_factor = folding_factor; // fft size is reduced. d_fft_size = (d_samples_per_code) / d_folding_factor; d_fft_codes.reserve(d_fft_size); d_magnitude.reserve(d_samples_per_code * d_folding_factor); d_magnitude_folded.reserve(d_fft_size); d_possible_delay.reserve(d_folding_factor); d_corr_output_f.reserve(d_folding_factor); /*Create the d_code signal , which would store the values of the code in its original form to perform later correlation in time domain*/ d_code = std::vector(d_samples_per_code, lv_cmake(0.0F, 0.0F)); // Direct FFT d_fft_if = std::make_shared(d_fft_size, true); // Inverse FFT d_ifft = std::make_shared(d_fft_size, false); // For dumping samples into a file d_dump = dump; d_dump_filename = std::move(dump_filename); d_code_folded = std::vector(d_fft_size, lv_cmake(0.0F, 0.0F)); d_signal_folded.reserve(d_fft_size); d_noise_floor_power = 0; d_doppler_resolution = 0; d_threshold = 0; d_doppler_step = 0; d_gnss_synchro = nullptr; d_code_phase = 0; d_doppler_freq = 0; d_test_statistics = 0; d_channel = 0; } pcps_quicksync_acquisition_cc::~pcps_quicksync_acquisition_cc() { try { if (d_dump) { d_dump_file.close(); } } catch (const std::ofstream::failure& e) { std::cerr << "Problem closing Acquisition dump file: " << d_dump_filename << '\n'; } catch (const std::exception& e) { std::cerr << e.what() << '\n'; } } void pcps_quicksync_acquisition_cc::set_local_code(std::complex* code) { /* save a local copy of the code without the folding process to perform corre- lation in time in the final steps of the acquisition stage */ memcpy(d_code.data(), code, sizeof(gr_complex) * d_samples_per_code); memcpy(d_fft_if->get_inbuf(), d_code_folded.data(), sizeof(gr_complex) * (d_fft_size)); /* perform folding of the code by the factorial factor parameter. Notice that folding of the code in the time stage would result in a downsampled spectrum in the frequency domain after applying the fftw operation */ for (uint32_t i = 0; i < d_folding_factor; i++) { std::transform((code + i * d_fft_size), (code + ((i + 1) * d_fft_size)), d_fft_if->get_inbuf(), d_fft_if->get_inbuf(), std::plus()); } d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_codes.data(), d_fft_if->get_outbuf(), d_fft_size); } void pcps_quicksync_acquisition_cc::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_mag = 0.0; d_input_power = 0.0; if (d_doppler_step == 0) { d_doppler_step = 250; } // Count the number of bins d_num_doppler_bins = 0; for (auto doppler = static_cast(-d_doppler_max); doppler <= static_cast(d_doppler_max); doppler += d_doppler_step) { d_num_doppler_bins++; } // Create the carrier Doppler wipeoff signals d_grid_doppler_wipeoffs = std::vector>(d_num_doppler_bins, std::vector(d_samples_per_code * d_folding_factor)); for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { int32_t doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; float phase_step_rad = GPS_TWO_PI * doppler / static_cast(d_fs_in); std::array _phase{}; volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index].data(), -phase_step_rad, _phase.data(), d_samples_per_code * d_folding_factor); } } void pcps_quicksync_acquisition_cc::set_state(int32_t state) { d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_active = true; } else if (d_state == 0) { } else { LOG(ERROR) << "State can only be set to 0 or 1"; } } int pcps_quicksync_acquisition_cc::general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items __attribute__((unused))) { /* * By J.Arribas, L.Esteve and M.Molina * Acquisition strategy (Kay Borre book + CFAR threshold): * 1. Compute the input signal power estimation * 2. Doppler serial search loop * 3. Perform the FFT-based circular convolution (parallel time search) * 4. Record the maximum peak and the associated synchronization parameters * 5. Compute the test statistics and compare to the threshold * 6. Declare positive or negative acquisition using a message queue */ // DLOG(INFO) << "START GENERAL WORK"; int32_t acquisition_message = -1; // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL switch (d_state) { case 0: { // DLOG(INFO) << "START CASE 0"; if (d_active) { // restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; } d_sample_counter += static_cast(d_sampled_ms * d_samples_per_ms * ninput_items[0]); // sample counter consume_each(ninput_items[0]); // DLOG(INFO) << "END CASE 0"; break; } case 1: { // initialize acquisition implementing the QuickSync algorithm // DLOG(INFO) << "START CASE 1"; int32_t doppler; uint32_t indext = 0; float magt = 0.0; const auto* in = reinterpret_cast(input_items[0]); // Get the input samples pointer std::vector in_temp(d_samples_per_code * d_folding_factor); // Create a signal to store a signal of size 1ms, to perform correlation // in time. No folding on this data is required std::vector in_1code(d_samples_per_code); // Stores the values of the correlation output between the local code // and the signal with doppler shift corrected std::vector corr_output(d_samples_per_code); // Stores a copy of the folded version of the signal.This is used for // the FFT operations in future steps of execution*/ // gr_complex in_folded[d_fft_size]; float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_input_power = 0.0; d_mag = 0.0; d_test_statistics = 0.0; d_noise_floor_power = 0.0; d_sample_counter += static_cast(d_sampled_ms * d_samples_per_ms); // sample counter d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " ,algorithm: pcps_quicksync_acquisition" << " ,folding factor: " << d_folding_factor << " ,sample stamp: " << d_sample_counter << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step << ", Signal Size: " << d_samples_per_code * d_folding_factor; // 1- Compute the input signal power estimation. This operation is // being performed in a signal of size nxp volk_32fc_magnitude_squared_32f(d_magnitude.data(), in, d_samples_per_code * d_folding_factor); volk_32f_accumulator_s32f(&d_input_power, d_magnitude.data(), d_samples_per_code * d_folding_factor); d_input_power /= static_cast(d_samples_per_code * d_folding_factor); for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { // Ensure that the signal is going to start with all samples // at zero. This is done to avoid over acumulation when performing // the folding process to be stored in d_fft_if->get_inbuf() d_signal_folded = std::vector(d_fft_size, lv_cmake(0.0F, 0.0F)); memcpy(d_fft_if->get_inbuf(), d_signal_folded.data(), sizeof(gr_complex) * (d_fft_size)); // Doppler search steps and then multiplication of the incoming // signal with the doppler wipeoffs to eliminate frequency offset doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; // Perform multiplication of the incoming signal with the // complex exponential vector. This removes the frequency doppler // shift offset volk_32fc_x2_multiply_32fc(in_temp.data(), in, d_grid_doppler_wipeoffs[doppler_index].data(), d_samples_per_code * d_folding_factor); // Perform folding of the carrier wiped-off incoming signal. Since // superlinear method is being used the folding factor in the // incoming raw data signal is of d_folding_factor^2 for (int32_t i = 0; i < static_cast(d_folding_factor * d_folding_factor); i++) { std::transform((in_temp.data() + i * d_fft_size), (in_temp.data() + ((i + 1) * d_fft_size)), d_fft_if->get_inbuf(), d_fft_if->get_inbuf(), std::plus()); } // 3- Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // Multiply carrier wiped--off, Fourier transformed incoming // signal with the local FFT'd code reference using SIMD // operations with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes.data(), d_fft_size); // compute the inverse FFT of the aliased signal d_ifft->execute(); // Compute the magnitude and get the maximum value with its // index position volk_32fc_magnitude_squared_32f(d_magnitude_folded.data(), d_ifft->get_outbuf(), d_fft_size); // Normalize the maximum value to correct the scale factor // introduced by FFTW volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude_folded.data(), d_fft_size); magt = d_magnitude_folded[indext] / (fft_normalization_factor * fft_normalization_factor); // 4- record the maximum peak and the associated synchronization parameters if (d_mag < magt) { d_mag = magt; // In case that d_bit_transition_flag = true, we compare the potentially // new maximum test statistics (d_mag/d_input_power) with the value in // d_test_statistics. When the second dwell is being processed, the value // of d_mag/d_input_power could be lower than d_test_statistics (i.e, // the maximum test statistics in the previous dwell is greater than // current d_mag/d_input_power). Note that d_test_statistics is not // restarted between consecutive dwells in multidwell operation. if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag) { uint32_t detected_delay_samples_folded = 0; detected_delay_samples_folded = (indext % d_samples_per_code); std::array complex_acumulator{}; for (int32_t i = 0; i < static_cast(d_folding_factor); i++) { d_possible_delay[i] = detected_delay_samples_folded + (i)*d_fft_size; } for (int32_t i = 0; i < static_cast(d_folding_factor); i++) { // Copy a signal of 1 code length into suggested buffer. // The copied signal must have doppler effect corrected*/ memcpy(in_1code.data(), &in_temp[d_possible_delay[i]], sizeof(gr_complex) * (d_samples_per_code)); // Perform multiplication of the unmodified local // generated code with the incoming signal with doppler // effect corrected and accumulates its value. This // is indeed correlation in time for an specific value // of a shift volk_32fc_x2_multiply_32fc(corr_output.data(), in_1code.data(), d_code.data(), d_samples_per_code); for (int32_t j = 0; j < d_samples_per_code; j++) { complex_acumulator[i] += (corr_output[j]); } } // Obtain maximum value of correlation given the possible delay selected volk_32fc_magnitude_squared_32f(d_corr_output_f.data(), complex_acumulator.data(), d_folding_factor); volk_gnsssdr_32f_index_max_32u(&indext, d_corr_output_f.data(), d_folding_factor); // Now save the real code phase in the gnss_syncro block for use in other stages d_gnss_synchro->Acq_delay_samples = static_cast(d_possible_delay[indext]); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_doppler_step = d_doppler_step; // 5- Compute the test statistics and compare to the threshold d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; d_test_statistics = d_mag / d_input_power; } } // Record results to file if required if (d_dump) { // Since QuickSYnc performs a folded correlation in frequency by means // of the FFT, it is essential to also keep the values obtained from the // possible delay to show how it is maximize std::stringstream filename; std::streamsize n = sizeof(float) * (d_fft_size); // complex file write filename.str(""); filename << "../data/test_statistics_" << d_gnss_synchro->System << "_" << d_gnss_synchro->Signal[0] << d_gnss_synchro->Signal[1] << "_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.write(reinterpret_cast(d_magnitude_folded.data()), n); // write directly |abs(x)|^2 in this Doppler bin? d_dump_file.close(); } } if (!d_bit_transition_flag) { if (d_test_statistics > d_threshold) { d_state = 2; // Positive acquisition } else if (d_well_count == d_max_dwells) { d_state = 3; // Negative acquisition } } else { if (d_well_count == d_max_dwells) // d_max_dwells = 2 { if (d_test_statistics > d_threshold) { d_state = 2; // Positive acquisition } else { d_state = 3; // Negative acquisition } } } consume_each(1); break; } case 2: { // DLOG(INFO) << "START CASE 2"; // 6.1- Declare positive acquisition using a message port DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "folding factor " << d_folding_factor; DLOG(INFO) << "possible delay correlation output"; for (int32_t i = 0; i < static_cast(d_folding_factor); i++) { DLOG(INFO) << d_possible_delay[i] << "\t\t\t" << d_corr_output_f[i]; } DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude folded " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += static_cast(d_sampled_ms * d_samples_per_ms * ninput_items[0]); // sample counter consume_each(ninput_items[0]); acquisition_message = 1; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); // DLOG(INFO) << "END CASE 2"; break; } case 3: { // DLOG(INFO) << "START CASE 3"; // 6.2- Declare negative acquisition using a message port DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "folding factor " << d_folding_factor; DLOG(INFO) << "possible delay corr output"; for (int32_t i = 0; i < static_cast(d_folding_factor); i++) { DLOG(INFO) << d_possible_delay[i] << "\t\t\t" << d_corr_output_f[i]; } DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude folded " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += static_cast(d_sampled_ms * d_samples_per_ms * ninput_items[0]); // sample counter consume_each(ninput_items[0]); acquisition_message = 2; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); // DLOG(INFO) << "END CASE 3"; break; } } return noutput_items; }