/*! * \file pcps_acquisition.cc * \brief This class implements a Parallel Code Phase Search Acquisition * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "pcps_acquisition.h" #include "GLONASS_L1_L2_CA.h" // for GLONASS_TWO_PI #include "GPS_L1_CA.h" // for GPS_TWO_PI #include "gnss_frequencies.h" #include "gnss_sdr_create_directory.h" #include "gnss_synchro.h" #if HAS_STD_FILESYSTEM #if HAS_STD_FILESYSTEM_EXPERIMENTAL #include #else #include #endif #else #include #endif #include #include #include // for from_long #include // for mp #include #include #include // for fill_n, min #include #include // for floor, fmod, rint, ceil #include // for memcpy #include #include #if HAS_STD_FILESYSTEM #if HAS_STD_FILESYSTEM_EXPERIMENTAL namespace fs = std::experimental::filesystem; #else namespace fs = std::filesystem; #endif #else namespace fs = boost::filesystem; #endif pcps_acquisition_sptr pcps_make_acquisition(const Acq_Conf& conf_) { return pcps_acquisition_sptr(new pcps_acquisition(conf_)); } pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acquisition", gr::io_signature::make(1, 1, conf_.it_size), gr::io_signature::make(0, 0, conf_.it_size)) { this->message_port_register_out(pmt::mp("events")); acq_parameters = conf_; d_sample_counter = 0ULL; // SAMPLE COUNTER d_active = false; d_positive_acq = 0; d_state = 0; d_doppler_bias = 0; d_num_noncoherent_integrations_counter = 0U; d_consumed_samples = acq_parameters.sampled_ms * acq_parameters.samples_per_ms * (acq_parameters.bit_transition_flag ? 2 : 1); if (acq_parameters.sampled_ms == acq_parameters.ms_per_code) { d_fft_size = d_consumed_samples; } else { d_fft_size = d_consumed_samples * 2; } // d_fft_size = next power of two? //// d_mag = 0; d_input_power = 0.0; d_num_doppler_bins = 0U; d_threshold = 0.0; d_doppler_step = 0U; d_doppler_center = 0U; d_doppler_center_step_two = 0.0; d_test_statistics = 0.0; d_channel = 0U; if (conf_.it_size == sizeof(gr_complex)) { d_cshort = false; } else { d_cshort = true; } // COD: // Experimenting with the overlap/save technique for handling bit trannsitions // The problem: Circular correlation is asynchronous with the received code. // In effect the first code phase used in the correlation is the current // estimate of the code phase at the start of the input buffer. If this is 1/2 // of the code period a bit transition would move all the signal energy into // adjacent frequency bands at +/- 1/T where T is the integration time. // // We can avoid this by doing linear correlation, effectively doubling the // size of the input buffer and padding the code with zeros. if (acq_parameters.bit_transition_flag) { d_fft_size = d_consumed_samples * 2; acq_parameters.max_dwells = 1; // Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells } d_tmp_buffer = std::vector(d_fft_size); d_fft_codes = std::vector>(d_fft_size); d_input_signal = std::vector>(d_fft_size); // Direct FFT d_fft_if = std::make_shared(d_fft_size, true); // Inverse FFT d_ifft = std::make_shared(d_fft_size, false); d_gnss_synchro = nullptr; d_worker_active = false; d_data_buffer = std::vector>(d_consumed_samples); if (d_cshort) { d_data_buffer_sc = std::vector(d_consumed_samples); } grid_ = arma::fmat(); narrow_grid_ = arma::fmat(); d_step_two = false; d_num_doppler_bins_step2 = acq_parameters.num_doppler_bins_step2; d_samplesPerChip = acq_parameters.samples_per_chip; d_buffer_count = 0U; // todo: CFAR statistic not available for non-coherent integration if (acq_parameters.max_dwells == 1) { d_use_CFAR_algorithm_flag = acq_parameters.use_CFAR_algorithm_flag; } else { d_use_CFAR_algorithm_flag = false; } d_dump_number = 0LL; d_dump_channel = acq_parameters.dump_channel; d_dump = acq_parameters.dump; d_dump_filename = acq_parameters.dump_filename; if (d_dump) { std::string dump_path; // Get path if (d_dump_filename.find_last_of('/') != std::string::npos) { std::string dump_filename_ = d_dump_filename.substr(d_dump_filename.find_last_of('/') + 1); dump_path = d_dump_filename.substr(0, d_dump_filename.find_last_of('/')); d_dump_filename = dump_filename_; } else { dump_path = std::string("."); } if (d_dump_filename.empty()) { d_dump_filename = "acquisition"; } // remove extension if any if (d_dump_filename.substr(1).find_last_of('.') != std::string::npos) { d_dump_filename = d_dump_filename.substr(0, d_dump_filename.find_last_of('.')); } d_dump_filename = dump_path + fs::path::preferred_separator + d_dump_filename; // create directory if (!gnss_sdr_create_directory(dump_path)) { std::cerr << "GNSS-SDR cannot create dump file for the Acquisition block. Wrong permissions?" << std::endl; d_dump = false; } } } void pcps_acquisition::set_resampler_latency(uint32_t latency_samples) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler acq_parameters.resampler_latency_samples = latency_samples; } void pcps_acquisition::set_local_code(std::complex* code) { // This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid if (is_fdma()) { update_grid_doppler_wipeoffs(); } // COD // Here we want to create a buffer that looks like this: // [ 0 0 0 ... 0 c_0 c_1 ... c_L] // where c_i is the local code and there are L zeros and L chips gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler if (acq_parameters.bit_transition_flag) { int32_t offset = d_fft_size / 2; std::fill_n(d_fft_if->get_inbuf(), offset, gr_complex(0.0, 0.0)); memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * offset); } else { if (acq_parameters.sampled_ms == acq_parameters.ms_per_code) { memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_consumed_samples); } else { std::fill_n(d_fft_if->get_inbuf(), d_fft_size - d_consumed_samples, gr_complex(0.0, 0.0)); memcpy(d_fft_if->get_inbuf() + d_consumed_samples, code, sizeof(gr_complex) * d_consumed_samples); } } d_fft_if->execute(); // We need the FFT of local code volk_32fc_conjugate_32fc(d_fft_codes.data(), d_fft_if->get_outbuf(), d_fft_size); } bool pcps_acquisition::is_fdma() { // reset the intermediate frequency d_doppler_bias = 0; // Dealing with FDMA system if (strcmp(d_gnss_synchro->Signal, "1G") == 0) { d_doppler_bias = static_cast(DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN)); LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_doppler_bias << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; return true; } if (strcmp(d_gnss_synchro->Signal, "2G") == 0) { d_doppler_bias += static_cast(DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN)); LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_doppler_bias << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; return true; } return false; } void pcps_acquisition::update_local_carrier(gsl::span carrier_vector, float freq) { float phase_step_rad; if (acq_parameters.use_automatic_resampler) { phase_step_rad = GPS_TWO_PI * freq / static_cast(acq_parameters.resampled_fs); } else { phase_step_rad = GPS_TWO_PI * freq / static_cast(acq_parameters.fs_in); } std::array _phase{}; volk_gnsssdr_s32f_sincos_32fc(carrier_vector.data(), -phase_step_rad, _phase.data(), carrier_vector.length()); } void pcps_acquisition::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Acq_doppler_step = 0U; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_mag = 0.0; d_input_power = 0.0; d_num_doppler_bins = static_cast(std::ceil(static_cast(static_cast(acq_parameters.doppler_max) - static_cast(-acq_parameters.doppler_max)) / static_cast(d_doppler_step))); // Create the carrier Doppler wipeoff signals if (d_grid_doppler_wipeoffs.empty()) { d_grid_doppler_wipeoffs = std::vector>>(d_num_doppler_bins, std::vector>(d_fft_size)); } if (acq_parameters.make_2_steps && (d_grid_doppler_wipeoffs_step_two.empty())) { d_grid_doppler_wipeoffs_step_two = std::vector>>(d_num_doppler_bins_step2, std::vector>(d_fft_size)); } if (d_magnitude_grid.empty()) { d_magnitude_grid = std::vector>(d_num_doppler_bins, std::vector(d_fft_size)); } for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { std::fill(d_magnitude_grid[doppler_index].begin(), d_magnitude_grid[doppler_index].end(), 0.0); } update_grid_doppler_wipeoffs(); d_worker_active = false; if (d_dump) { uint32_t effective_fft_size = (acq_parameters.bit_transition_flag ? (d_fft_size / 2) : d_fft_size); grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros); narrow_grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins_step2, arma::fill::zeros); } } void pcps_acquisition::update_grid_doppler_wipeoffs() { for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { int32_t doppler = -static_cast(acq_parameters.doppler_max) + d_doppler_center + d_doppler_step * doppler_index; update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_doppler_bias + doppler); } } void pcps_acquisition::update_grid_doppler_wipeoffs_step2() { for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins_step2; doppler_index++) { float doppler = (static_cast(doppler_index) - static_cast(floor(d_num_doppler_bins_step2 / 2.0))) * acq_parameters.doppler_step2; update_local_carrier(d_grid_doppler_wipeoffs_step_two[doppler_index], d_doppler_center_step_two + doppler); } } void pcps_acquisition::set_state(int32_t state) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_active = true; } else if (d_state == 0) { } else { LOG(ERROR) << "State can only be set to 0 or 1"; } } void pcps_acquisition::send_positive_acquisition() { // Declare positive acquisition using a message port // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL DLOG(INFO) << "positive acquisition" << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << ", sample_stamp " << d_sample_counter << ", test statistics value " << d_test_statistics << ", test statistics threshold " << d_threshold << ", code phase " << d_gnss_synchro->Acq_delay_samples << ", doppler " << d_gnss_synchro->Acq_doppler_hz << ", magnitude " << d_mag << ", input signal power " << d_input_power << ", Assist doppler_center " << d_doppler_center; d_positive_acq = 1; if (!d_channel_fsm.expired()) { // the channel FSM is set, so, notify it directly the positive acquisition to minimize delays d_channel_fsm.lock()->Event_valid_acquisition(); } else { this->message_port_pub(pmt::mp("events"), pmt::from_long(1)); } } void pcps_acquisition::send_negative_acquisition() { // Declare negative acquisition using a message port // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL DLOG(INFO) << "negative acquisition" << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << ", sample_stamp " << d_sample_counter << ", test statistics value " << d_test_statistics << ", test statistics threshold " << d_threshold << ", code phase " << d_gnss_synchro->Acq_delay_samples << ", doppler " << d_gnss_synchro->Acq_doppler_hz << ", magnitude " << d_mag << ", input signal power " << d_input_power; d_positive_acq = 0; this->message_port_pub(pmt::mp("events"), pmt::from_long(2)); } void pcps_acquisition::dump_results(int32_t effective_fft_size) { d_dump_number++; std::string filename = d_dump_filename; filename.append("_"); filename.append(1, d_gnss_synchro->System); filename.append("_"); filename.append(1, d_gnss_synchro->Signal[0]); filename.append(1, d_gnss_synchro->Signal[1]); filename.append("_ch_"); filename.append(std::to_string(d_channel)); filename.append("_"); filename.append(std::to_string(d_dump_number)); filename.append("_sat_"); filename.append(std::to_string(d_gnss_synchro->PRN)); filename.append(".mat"); mat_t* matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73); if (matfp == nullptr) { std::cout << "Unable to create or open Acquisition dump file" << std::endl; //acq_parameters.dump = false; } else { std::array dims{static_cast(effective_fft_size), static_cast(d_num_doppler_bins)}; matvar_t* matvar = Mat_VarCreate("acq_grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), grid_.memptr(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); dims[0] = static_cast(1); dims[1] = static_cast(1); matvar = Mat_VarCreate("doppler_max", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &acq_parameters.doppler_max, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("doppler_step", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &d_doppler_step, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("d_positive_acq", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &d_positive_acq, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); auto aux = static_cast(d_gnss_synchro->Acq_doppler_hz); matvar = Mat_VarCreate("acq_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &aux, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); aux = static_cast(d_gnss_synchro->Acq_delay_samples); matvar = Mat_VarCreate("acq_delay_samples", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &aux, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("test_statistic", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &d_test_statistics, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("threshold", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &d_threshold, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("input_power", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &d_input_power, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("sample_counter", MAT_C_UINT64, MAT_T_UINT64, 1, dims.data(), &d_sample_counter, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 1, dims.data(), &d_gnss_synchro->PRN, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("num_dwells", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &d_num_noncoherent_integrations_counter, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); if (acq_parameters.make_2_steps) { dims[0] = static_cast(effective_fft_size); dims[1] = static_cast(d_num_doppler_bins_step2); matvar = Mat_VarCreate("acq_grid_narrow", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), narrow_grid_.memptr(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); dims[0] = static_cast(1); dims[1] = static_cast(1); matvar = Mat_VarCreate("doppler_step_narrow", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &acq_parameters.doppler_step2, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); aux = d_doppler_center_step_two - static_cast(floor(d_num_doppler_bins_step2 / 2.0)) * acq_parameters.doppler_step2; matvar = Mat_VarCreate("doppler_grid_narrow_min", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &aux, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); } Mat_Close(matfp); } } float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int32_t& doppler, float input_power, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step) { float grid_maximum = 0.0; uint32_t index_doppler = 0U; uint32_t tmp_intex_t = 0U; uint32_t index_time = 0U; float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); // Find the correlation peak and the carrier frequency for (uint32_t i = 0; i < num_doppler_bins; i++) { volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i].data(), d_fft_size); if (d_magnitude_grid[i][tmp_intex_t] > grid_maximum) { grid_maximum = d_magnitude_grid[i][tmp_intex_t]; index_doppler = i; index_time = tmp_intex_t; } } indext = index_time; if (!d_step_two) { doppler = -static_cast(doppler_max) + d_doppler_center + doppler_step * static_cast(index_doppler); } else { doppler = static_cast(d_doppler_center_step_two + (static_cast(index_doppler) - static_cast(floor(d_num_doppler_bins_step2 / 2.0))) * acq_parameters.doppler_step2); } float magt = grid_maximum / (fft_normalization_factor * fft_normalization_factor); return magt / input_power; } float pcps_acquisition::first_vs_second_peak_statistic(uint32_t& indext, int32_t& doppler, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step) { // Look for correlation peaks in the results // Find the highest peak and compare it to the second highest peak // The second peak is chosen not closer than 1 chip to the highest peak float firstPeak = 0.0; uint32_t index_doppler = 0U; uint32_t tmp_intex_t = 0U; uint32_t index_time = 0U; // Find the correlation peak and the carrier frequency for (uint32_t i = 0; i < num_doppler_bins; i++) { volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i].data(), d_fft_size); if (d_magnitude_grid[i][tmp_intex_t] > firstPeak) { firstPeak = d_magnitude_grid[i][tmp_intex_t]; index_doppler = i; index_time = tmp_intex_t; } } indext = index_time; if (!d_step_two) { doppler = -static_cast(doppler_max) + d_doppler_center + doppler_step * static_cast(index_doppler); } else { doppler = static_cast(d_doppler_center_step_two + (static_cast(index_doppler) - static_cast(floor(d_num_doppler_bins_step2 / 2.0))) * acq_parameters.doppler_step2); } // Find 1 chip wide code phase exclude range around the peak int32_t excludeRangeIndex1 = index_time - d_samplesPerChip; int32_t excludeRangeIndex2 = index_time + d_samplesPerChip; // Correct code phase exclude range if the range includes array boundaries if (excludeRangeIndex1 < 0) { excludeRangeIndex1 = d_fft_size + excludeRangeIndex1; } else if (excludeRangeIndex2 >= static_cast(d_fft_size)) { excludeRangeIndex2 = excludeRangeIndex2 - d_fft_size; } int32_t idx = excludeRangeIndex1; memcpy(d_tmp_buffer.data(), d_magnitude_grid[index_doppler].data(), d_fft_size); do { d_tmp_buffer[idx] = 0.0; idx++; if (idx == static_cast(d_fft_size)) { idx = 0; } } while (idx != excludeRangeIndex2); // Find the second highest correlation peak in the same freq. bin --- volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_tmp_buffer.data(), d_fft_size); float secondPeak = d_tmp_buffer[tmp_intex_t]; // Compute the test statistics and compare to the threshold return firstPeak / secondPeak; } void pcps_acquisition::acquisition_core(uint64_t samp_count) { gr::thread::scoped_lock lk(d_setlock); // Initialize acquisition algorithm int32_t doppler = 0; uint32_t indext = 0U; int32_t effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size); if (d_cshort) { volk_gnsssdr_16ic_convert_32fc(d_data_buffer.data(), d_data_buffer_sc.data(), d_consumed_samples); } memcpy(d_input_signal.data(), d_data_buffer.data(), d_consumed_samples * sizeof(gr_complex)); if (d_fft_size > d_consumed_samples) { for (uint32_t i = d_consumed_samples; i < d_fft_size; i++) { d_input_signal[i] = gr_complex(0.0, 0.0); } } const gr_complex* in = d_input_signal.data(); // Get the input samples pointer d_input_power = 0.0; d_mag = 0.0; d_num_noncoherent_integrations_counter++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " ,sample stamp: " << samp_count << ", threshold: " << d_threshold << ", doppler_max: " << acq_parameters.doppler_max << ", doppler_step: " << d_doppler_step << ", use_CFAR_algorithm_flag: " << (d_use_CFAR_algorithm_flag ? "true" : "false"); lk.unlock(); if (d_use_CFAR_algorithm_flag or acq_parameters.bit_transition_flag) { // Compute the input signal power estimation volk_32fc_magnitude_squared_32f(d_tmp_buffer.data(), in, d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_tmp_buffer.data(), d_fft_size); d_input_power /= static_cast(d_fft_size); } // Doppler frequency grid loop if (!d_step_two) { for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { // Remove Doppler volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index].data(), d_fft_size); // Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // Multiply carrier wiped--off, Fourier transformed incoming signal with the local FFT'd code reference volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes.data(), d_fft_size); // Compute the inverse FFT d_ifft->execute(); // Compute squared magnitude (and accumulate in case of non-coherent integration) size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0); if (d_num_noncoherent_integrations_counter == 1) { volk_32fc_magnitude_squared_32f(d_magnitude_grid[doppler_index].data(), d_ifft->get_outbuf() + offset, effective_fft_size); } else { volk_32fc_magnitude_squared_32f(d_tmp_buffer.data(), d_ifft->get_outbuf() + offset, effective_fft_size); volk_32f_x2_add_32f(d_magnitude_grid[doppler_index].data(), d_magnitude_grid[doppler_index].data(), d_tmp_buffer.data(), effective_fft_size); } // Record results to file if required if (d_dump and d_channel == d_dump_channel) { memcpy(grid_.colptr(doppler_index), d_magnitude_grid[doppler_index].data(), sizeof(float) * effective_fft_size); } } // Compute the test statistic if (d_use_CFAR_algorithm_flag) { d_test_statistics = max_to_input_power_statistic(indext, doppler, d_input_power, d_num_doppler_bins, acq_parameters.doppler_max, d_doppler_step); } else { d_test_statistics = first_vs_second_peak_statistic(indext, doppler, d_num_doppler_bins, acq_parameters.doppler_max, d_doppler_step); } if (acq_parameters.use_automatic_resampler) { // take into account the acquisition resampler ratio d_gnss_synchro->Acq_delay_samples = static_cast(std::fmod(static_cast(indext), acq_parameters.samples_per_code)) * acq_parameters.resampler_ratio; d_gnss_synchro->Acq_delay_samples -= static_cast(acq_parameters.resampler_latency_samples); //account the resampler filter latency d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = rint(static_cast(samp_count) * acq_parameters.resampler_ratio); } else { d_gnss_synchro->Acq_delay_samples = static_cast(std::fmod(static_cast(indext), acq_parameters.samples_per_code)); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = samp_count; } } else { for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins_step2; doppler_index++) { volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index].data(), d_fft_size); // Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd code reference using SIMD operations with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes.data(), d_fft_size); // compute the inverse FFT d_ifft->execute(); size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0); if (d_num_noncoherent_integrations_counter == 1) { volk_32fc_magnitude_squared_32f(d_magnitude_grid[doppler_index].data(), d_ifft->get_outbuf() + offset, effective_fft_size); } else { volk_32fc_magnitude_squared_32f(d_tmp_buffer.data(), d_ifft->get_outbuf() + offset, effective_fft_size); volk_32f_x2_add_32f(d_magnitude_grid[doppler_index].data(), d_magnitude_grid[doppler_index].data(), d_tmp_buffer.data(), effective_fft_size); } // Record results to file if required if (d_dump and d_channel == d_dump_channel) { memcpy(narrow_grid_.colptr(doppler_index), d_magnitude_grid[doppler_index].data(), sizeof(float) * effective_fft_size); } } // Compute the test statistic if (d_use_CFAR_algorithm_flag) { d_test_statistics = max_to_input_power_statistic(indext, doppler, d_input_power, d_num_doppler_bins_step2, static_cast(d_doppler_center_step_two - (static_cast(d_num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2), acq_parameters.doppler_step2); } else { d_test_statistics = first_vs_second_peak_statistic(indext, doppler, d_num_doppler_bins_step2, static_cast(d_doppler_center_step_two - (static_cast(d_num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2), acq_parameters.doppler_step2); } if (acq_parameters.use_automatic_resampler) { // take into account the acquisition resampler ratio d_gnss_synchro->Acq_delay_samples = static_cast(std::fmod(static_cast(indext), acq_parameters.samples_per_code)) * acq_parameters.resampler_ratio; d_gnss_synchro->Acq_delay_samples -= static_cast(acq_parameters.resampler_latency_samples); //account the resampler filter latency d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = rint(static_cast(samp_count) * acq_parameters.resampler_ratio); d_gnss_synchro->Acq_doppler_step = acq_parameters.doppler_step2; } else { d_gnss_synchro->Acq_delay_samples = static_cast(std::fmod(static_cast(indext), acq_parameters.samples_per_code)); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = samp_count; d_gnss_synchro->Acq_doppler_step = acq_parameters.doppler_step2; } } lk.lock(); if (!acq_parameters.bit_transition_flag) { if (d_test_statistics > d_threshold) { d_active = false; if (acq_parameters.make_2_steps) { if (d_step_two) { send_positive_acquisition(); d_step_two = false; d_state = 0; // Positive acquisition } else { d_step_two = true; // Clear input buffer and make small grid acquisition d_num_noncoherent_integrations_counter = 0; d_positive_acq = 0; d_state = 0; } } else { send_positive_acquisition(); d_state = 0; // Positive acquisition } } else { d_buffer_count = 0; d_state = 1; } if (d_num_noncoherent_integrations_counter == acq_parameters.max_dwells) { if (d_state != 0) { send_negative_acquisition(); } d_state = 0; d_active = false; d_step_two = false; } } else { d_active = false; if (d_test_statistics > d_threshold) { if (acq_parameters.make_2_steps) { if (d_step_two) { send_positive_acquisition(); d_step_two = false; d_state = 0; // Positive acquisition } else { d_step_two = true; // Clear input buffer and make small grid acquisition d_num_noncoherent_integrations_counter = 0U; d_state = 0; } } else { send_positive_acquisition(); d_state = 0; // Positive acquisition } } else { d_state = 0; // Negative acquisition d_step_two = false; send_negative_acquisition(); } } d_worker_active = false; if ((d_num_noncoherent_integrations_counter == acq_parameters.max_dwells) or (d_positive_acq == 1)) { // Record results to file if required if (d_dump and d_channel == d_dump_channel) { pcps_acquisition::dump_results(effective_fft_size); } d_num_noncoherent_integrations_counter = 0U; d_positive_acq = 0; // Reset grid for (uint32_t i = 0; i < d_num_doppler_bins; i++) { for (uint32_t k = 0; k < d_fft_size; k++) { d_magnitude_grid[i][k] = 0.0; } } } } // Called by gnuradio to enable drivers, etc for i/o devices. bool pcps_acquisition::start() { d_sample_counter = 0ULL; return true; } int pcps_acquisition::general_work(int noutput_items __attribute__((unused)), gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items __attribute__((unused))) { /* * By J.Arribas, L.Esteve and M.Molina * Acquisition strategy (Kay Borre book + CFAR threshold): * 1. Compute the input signal power estimation * 2. Doppler serial search loop * 3. Perform the FFT-based circular convolution (parallel time search) * 4. Record the maximum peak and the associated synchronization parameters * 5. Compute the test statistics and compare to the threshold * 6. Declare positive or negative acquisition using a message port */ gr::thread::scoped_lock lk(d_setlock); if (!d_active or d_worker_active) { if (!acq_parameters.blocking_on_standby) { d_sample_counter += static_cast(ninput_items[0]); consume_each(ninput_items[0]); } if (d_step_two) { d_doppler_center_step_two = static_cast(d_gnss_synchro->Acq_doppler_hz); update_grid_doppler_wipeoffs_step2(); d_state = 0; d_active = true; } return 0; } switch (d_state) { case 0: { // Restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; d_buffer_count = 0U; if (!acq_parameters.blocking_on_standby) { d_sample_counter += static_cast(ninput_items[0]); // sample counter consume_each(ninput_items[0]); } break; } case 1: { uint32_t buff_increment; if (d_cshort) { const auto* in = reinterpret_cast(input_items[0]); // Get the input samples pointer if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples) { buff_increment = ninput_items[0]; } else { buff_increment = d_consumed_samples - d_buffer_count; } memcpy(&d_data_buffer_sc[d_buffer_count], in, sizeof(lv_16sc_t) * buff_increment); } else { const auto* in = reinterpret_cast(input_items[0]); // Get the input samples pointer if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples) { buff_increment = ninput_items[0]; } else { buff_increment = d_consumed_samples - d_buffer_count; } memcpy(&d_data_buffer[d_buffer_count], in, sizeof(gr_complex) * buff_increment); } // If buffer will be full in next iteration if (d_buffer_count >= d_consumed_samples) { d_state = 2; } d_buffer_count += buff_increment; d_sample_counter += static_cast(buff_increment); consume_each(buff_increment); break; } case 2: { // Copy the data to the core and let it know that new data is available if (acq_parameters.blocking) { lk.unlock(); acquisition_core(d_sample_counter); } else { gr::thread::thread d_worker(&pcps_acquisition::acquisition_core, this, d_sample_counter); d_worker_active = true; } consume_each(0); d_buffer_count = 0U; break; } } return 0; }