/*!
* \file gps_sdr_signal_processing.cc
* \brief This class implements various functions for GPS L1 CA signals
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "gps_sdr_signal_processing.h"
#include
#include
auto auxCeil = [](float x) { return static_cast(static_cast((x) + 1)); };
void gps_l1_ca_code_gen_int(gsl::span _dest, int32_t _prn, uint32_t _chip_shift)
{
const uint32_t _code_length = 1023;
std::bitset<_code_length> G1{};
std::bitset<_code_length> G2{};
std::bitset<10> G1_register{};
std::bitset<10> G2_register{};
bool feedback1, feedback2;
bool aux;
uint32_t lcv, lcv2;
uint32_t delay;
int32_t prn_idx;
// G2 Delays as defined in GPS-ISD-200D
const std::array delays = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472,
473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/,
145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762,
355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/};
// compute delay array index for given PRN number
if (120 <= _prn && _prn <= 138)
{
prn_idx = _prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88)
}
else
{
prn_idx = _prn - 1;
}
// A simple error check
if ((prn_idx < 0) || (prn_idx > 51))
{
return;
}
for (lcv = 0; lcv < 10; lcv++)
{
G1_register[lcv] = true;
G2_register[lcv] = true;
}
// Generate G1 & G2 Register
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[0];
G2[lcv] = G2_register[0];
feedback1 = G1_register[7] xor G1_register[0];
feedback2 = G2_register[8] xor G2_register[7] xor G2_register[4] xor G2_register[2] xor G2_register[1] xor G2_register[0];
for (lcv2 = 0; lcv2 < 9; lcv2++)
{
G1_register[lcv2] = G1_register[lcv2 + 1];
G2_register[lcv2] = G2_register[lcv2 + 1];
}
G1_register[9] = feedback1;
G2_register[9] = feedback2;
}
// Set the delay
delay = _code_length - delays[prn_idx];
delay += _chip_shift;
delay %= _code_length;
// Generate PRN from G1 and G2 Registers
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[(lcv + _chip_shift) % _code_length] xor G2[delay];
if (aux == true)
{
_dest[lcv] = 1;
}
else
{
_dest[lcv] = -1;
}
delay++;
delay %= _code_length;
}
}
void gps_l1_ca_code_gen_float(gsl::span _dest, int32_t _prn, uint32_t _chip_shift)
{
const uint32_t _code_length = 1023;
std::array ca_code_int{};
gps_l1_ca_code_gen_int(ca_code_int, _prn, _chip_shift);
for (uint32_t ii = 0; ii < _code_length; ++ii)
{
_dest[ii] = static_cast(ca_code_int[ii]);
}
}
void gps_l1_ca_code_gen_complex(gsl::span> _dest, int32_t _prn, uint32_t _chip_shift)
{
const uint32_t _code_length = 1023;
std::array ca_code_int{};
gps_l1_ca_code_gen_int(ca_code_int, _prn, _chip_shift);
for (uint32_t ii = 0; ii < _code_length; ++ii)
{
_dest[ii] = std::complex(static_cast(ca_code_int[ii]), 0.0F);
}
}
/*
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
* NOTICE: the number of samples is rounded towards zero (integer truncation)
*/
void gps_l1_ca_code_gen_complex_sampled(gsl::span> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::array, 1023> _code{};
int32_t _samplesPerCode, _codeValueIndex;
float _ts;
float _tc;
float aux;
const int32_t _codeFreqBasis = 1023000; // Hz
const int32_t _codeLength = 1023;
//--- Find number of samples per spreading code ----------------------------
_samplesPerCode = static_cast(static_cast(_fs) / static_cast(_codeFreqBasis / _codeLength));
//--- Find time constants --------------------------------------------------
_ts = 1.0 / static_cast(_fs); // Sampling period in sec
_tc = 1.0 / static_cast(_codeFreqBasis); // C/A chip period in sec
gps_l1_ca_code_gen_complex(_code, _prn, _chip_shift); // generate C/A code 1 sample per chip
for (int32_t i = 0; i < _samplesPerCode; i++)
{
//=== Digitizing =======================================================
//--- Make index array to read C/A code values -------------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
//--- Make the digitized version of the C/A code -----------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = _code[_codeLength - 1];
}
else
{
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
}
}
}