/*! * \file beidou_b1i_signal_processing.cc * \brief This class implements various functions for BeiDou B1I signal * \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "beidou_b1i_signal_processing.h" #include #include #include auto auxCeil = [](float x) { return static_cast(static_cast((x) + 1)); }; void beidou_b1i_code_gen_int(gsl::span _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 2046; std::bitset<_code_length> G1{}; std::bitset<_code_length> G2{}; std::bitset<11> G1_register(std::string("01010101010")); std::bitset<11> G2_register(std::string("01010101010")); bool feedback1, feedback2; bool aux; uint32_t lcv, lcv2; uint32_t delay; int32_t prn_idx; const std::array delays = {712 /*PRN1*/, 1581, 1414, 1550, 581, 771, 1311, 1043, 1549, 359, 710, 1579, 1548, 1103, 579, 769, 358, 709, 1411, 1547, 1102, 578, 357, 1577, 1410, 1546, 1101, 707, 1576, 1409, 1545, 354 /*PRN32*/, 705}; const std::array phase1 = {1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8, 8, 9, 9, 10}; const std::array phase2 = {3, 4, 5, 6, 8, 9, 10, 11, 7, 4, 5, 6, 8, 9, 10, 11, 5, 6, 8, 9, 10, 11, 6, 8, 9, 10, 11, 8, 9, 10, 11, 9, 10, 11, 10, 11, 11}; // compute delay array index for given PRN number prn_idx = _prn - 1; // A simple error check if ((prn_idx < 0) || (prn_idx > 32)) { return; } // Generate G1 & G2 Register for (lcv = 0; lcv < _code_length; lcv++) { G1[lcv] = G1_register[0]; G2[lcv] = G2_register[-(phase1[prn_idx] - 11)] xor G2_register[-(phase2[prn_idx] - 11)]; feedback1 = G1_register[0] xor G1_register[1] xor G1_register[2] xor G1_register[3] xor G1_register[4] xor G1_register[10]; feedback2 = G2_register[0] xor G2_register[2] xor G2_register[3] xor G2_register[6] xor G2_register[7] xor G2_register[8] xor G2_register[9] xor G2_register[10]; for (lcv2 = 0; lcv2 < 10; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; G2_register[lcv2] = G2_register[lcv2 + 1]; } G1_register[10] = feedback1; G2_register[10] = feedback2; } // Set the delay delay = _code_length - delays[prn_idx] * 0; //********************************** delay += _chip_shift; delay %= _code_length; // Generate PRN from G1 and G2 Registers for (lcv = 0; lcv < _code_length; lcv++) { aux = G1[(lcv + _chip_shift) % _code_length] xor G2[delay]; if (aux == true) { _dest[lcv] = 1; } else { _dest[lcv] = -1; } delay++; delay %= _code_length; } } void beidou_b1i_code_gen_float(gsl::span _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 2046; std::array b1i_code_int{}; beidou_b1i_code_gen_int(gsl::span(b1i_code_int.data(), _code_length), _prn, _chip_shift); for (uint32_t ii = 0; ii < _code_length; ++ii) { _dest[ii] = static_cast(b1i_code_int[ii]); } } void beidou_b1i_code_gen_complex(gsl::span> _dest, int32_t _prn, uint32_t _chip_shift) { const uint32_t _code_length = 2046; std::array b1i_code_int{}; beidou_b1i_code_gen_int(gsl::span(b1i_code_int.data(), _code_length), _prn, _chip_shift); for (uint32_t ii = 0; ii < _code_length; ++ii) { _dest[ii] = std::complex(static_cast(b1i_code_int[ii]), 0.0F); } } /* * Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency */ void beidou_b1i_code_gen_complex_sampled(gsl::span> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book std::array, 2046> _code{}; int32_t _samplesPerCode, _codeValueIndex; float _ts; float _tc; float aux; const int32_t _codeFreqBasis = 2046000; // Hz const int32_t _codeLength = 2046; // --- Find number of samples per spreading code --------------------------- _samplesPerCode = static_cast(static_cast(_fs) / static_cast(_codeFreqBasis / _codeLength)); // --- Find time constants ------------------------------------------------- _ts = 1.0 / static_cast(_fs); // Sampling period in sec _tc = 1.0 / static_cast(_codeFreqBasis); // C/A chip period in sec beidou_b1i_code_gen_complex(_code, _prn, _chip_shift); // generate C/A code 1 sample per chip for (int32_t i = 0; i < _samplesPerCode; i++) { // === Digitizing ================================================== // --- Make index array to read C/A code values -------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). aux = (_ts * (i + 1)) / _tc; _codeValueIndex = auxCeil(aux) - 1; // --- Make the digitized version of the C/A code ------------------ // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == _samplesPerCode - 1) { // --- Correct the last index (due to number rounding issues) ----------- _dest[i] = _code[_codeLength - 1]; } else { _dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample } } }