/*! * \file galileo_pcps_8ms_acquisition_cc.cc * \brief This class implements a Parallel Code Phase Search Acquisition for * Galileo E1 signals with coherent integration time = 8 ms (two codes) * \author Marc Molina, 2013. marc.molina.pena(at)gmail.com * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "galileo_pcps_8ms_acquisition_cc.h" #include "MATH_CONSTANTS.h" #include #include #include #include #include #include #include #include galileo_pcps_8ms_acquisition_cc_sptr galileo_pcps_8ms_make_acquisition_cc( uint32_t sampled_ms, uint32_t max_dwells, uint32_t doppler_max, int64_t fs_in, int32_t samples_per_ms, int32_t samples_per_code, bool dump, const std::string &dump_filename, bool enable_monitor_output) { return galileo_pcps_8ms_acquisition_cc_sptr( new galileo_pcps_8ms_acquisition_cc(sampled_ms, max_dwells, doppler_max, fs_in, samples_per_ms, samples_per_code, dump, dump_filename, enable_monitor_output)); } galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc( uint32_t sampled_ms, uint32_t max_dwells, uint32_t doppler_max, int64_t fs_in, int32_t samples_per_ms, int32_t samples_per_code, bool dump, const std::string &dump_filename, bool enable_monitor_output) : gr::block("galileo_pcps_8ms_acquisition_cc", gr::io_signature::make(1, 1, static_cast(sizeof(gr_complex) * sampled_ms * samples_per_ms)), gr::io_signature::make(0, 1, sizeof(Gnss_Synchro))), d_dump_filename(dump_filename), d_gnss_synchro(nullptr), d_fs_in(fs_in), d_sample_counter(0ULL), d_threshold(0), d_doppler_freq(0), d_mag(0), d_input_power(0.0), d_test_statistics(0), d_state(0), d_samples_per_ms(samples_per_ms), d_samples_per_code(samples_per_code), d_channel(0), d_doppler_resolution(0), d_doppler_max(doppler_max), d_doppler_step(0), d_sampled_ms(sampled_ms), d_max_dwells(max_dwells), d_well_count(0), d_fft_size(d_sampled_ms * d_samples_per_ms), d_num_doppler_bins(0), d_code_phase(0), d_active(false), d_dump(dump), d_enable_monitor_output(enable_monitor_output) { this->message_port_register_out(pmt::mp("events")); d_fft_code_A = std::vector(d_fft_size, lv_cmake(0.0F, 0.0F)); d_fft_code_B = std::vector(d_fft_size, lv_cmake(0.0F, 0.0F)); d_magnitude = std::vector(d_fft_size, 0.0F); d_fft_if = gnss_fft_fwd_make_unique(d_fft_size); d_ifft = gnss_fft_rev_make_unique(d_fft_size); } galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc() { try { if (d_dump) { d_dump_file.close(); } } catch (const std::ofstream::failure &e) { std::cerr << "Problem closing Acquisition dump file: " << d_dump_filename << '\n'; } catch (const std::exception &e) { std::cerr << e.what() << '\n'; } } void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex *code) { // code A: two replicas of a primary code std::copy(code, code + d_fft_size, d_fft_if->get_inbuf()); d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_A.data(), d_fft_if->get_outbuf(), d_fft_size); // code B: two replicas of a primary code; the second replica is inverted. #if VOLK_EQUAL_OR_GREATER_31 auto minus_one = gr_complex(-1, 0); volk_32fc_s32fc_multiply2_32fc(&(d_fft_if->get_inbuf())[d_samples_per_code], &code[d_samples_per_code], &minus_one, d_samples_per_code); #else volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[d_samples_per_code], &code[d_samples_per_code], gr_complex(-1, 0), d_samples_per_code); #endif d_fft_if->execute(); // We need the FFT of local code // Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_B.data(), d_fft_if->get_outbuf(), d_fft_size); } void galileo_pcps_8ms_acquisition_cc::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Acq_doppler_step = 0U; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_mag = 0.0; d_input_power = 0.0; // Count the number of bins d_num_doppler_bins = 0; for (auto doppler = static_cast(-d_doppler_max); doppler <= static_cast(d_doppler_max); doppler += d_doppler_step) { d_num_doppler_bins++; } // Create the carrier Doppler wipeoff signals d_grid_doppler_wipeoffs = std::vector>(d_num_doppler_bins, std::vector(d_fft_size)); for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { int32_t doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; float phase_step_rad = static_cast(TWO_PI) * doppler / static_cast(d_fs_in); std::array _phase{}; volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index].data(), -phase_step_rad, _phase.data(), d_fft_size); } } void galileo_pcps_8ms_acquisition_cc::set_state(int32_t state) { d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; } else if (d_state == 0) { } else { LOG(ERROR) << "State can only be set to 0 or 1"; } } int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int32_t acquisition_message = -1; // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL switch (d_state) { case 0: { if (d_active) { // restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0ULL; d_gnss_synchro->Acq_doppler_step = 0U; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; } d_sample_counter += static_cast(d_fft_size) * ninput_items[0]; // sample counter consume_each(ninput_items[0]); break; } case 1: { // initialize acquisition algorithm int32_t doppler; uint32_t indext = 0; uint32_t indext_A = 0; uint32_t indext_B = 0; float magt = 0.0; float magt_A = 0.0; float magt_B = 0.0; const auto *in = reinterpret_cast(input_items[0]); // Get the input samples pointer float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_input_power = 0.0; d_mag = 0.0; d_sample_counter += static_cast(d_fft_size); // sample counter d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " ,sample stamp: " << d_sample_counter << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step; // 1- Compute the input signal power estimation volk_32fc_magnitude_squared_32f(d_magnitude.data(), in, d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitude.data(), d_fft_size); d_input_power /= static_cast(d_fft_size); // 2- Doppler frequency search loop for (uint32_t doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { // doppler search steps doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index].data(), d_fft_size); // 3- Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd code A reference using SIMD operations with // VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_A.data(), d_fft_size); // compute the inverse FFT d_ifft->execute(); // Search maximum volk_32fc_magnitude_squared_32f(d_magnitude.data(), d_ifft->get_outbuf(), d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_A, d_magnitude.data(), d_fft_size); // Normalize the maximum value to correct the scale factor introduced by FFTW magt_A = d_magnitude[indext_A] / (fft_normalization_factor * fft_normalization_factor); // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd code B reference using SIMD operations with // VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_B.data(), d_fft_size); // compute the inverse FFT d_ifft->execute(); // Search maximum volk_32fc_magnitude_squared_32f(d_magnitude.data(), d_ifft->get_outbuf(), d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_B, d_magnitude.data(), d_fft_size); // Normalize the maximum value to correct the scale factor introduced by FFTW magt_B = d_magnitude[indext_B] / (fft_normalization_factor * fft_normalization_factor); // Take the greater magnitude if (magt_A >= magt_B) { magt = magt_A; indext = indext_A; } else { magt = magt_B; indext = indext_B; } // 4- record the maximum peak and the associated synchronization parameters if (d_mag < magt) { d_mag = magt; d_gnss_synchro->Acq_delay_samples = static_cast(indext % d_samples_per_code); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_doppler_step = d_doppler_step; } // Record results to file if required if (d_dump) { std::stringstream filename; std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write filename.str(""); filename << "../data/test_statistics_" << d_gnss_synchro->System << "_" << d_gnss_synchro->Signal[0] << d_gnss_synchro->Signal[1] << "_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.write(reinterpret_cast(d_ifft->get_outbuf()), n); // write directly |abs(x)|^2 in this Doppler bin? d_dump_file.close(); } } // 5- Compute the test statistics and compare to the threshold // d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; d_test_statistics = d_mag / d_input_power; if (d_test_statistics > d_threshold) { d_state = 2; // Positive acquisition } else if (d_well_count == d_max_dwells) { d_state = 3; // Negative acquisition } consume_each(1); break; } case 2: { // 6.1- Declare positive acquisition using a message port DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += static_cast(d_fft_size) * ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 1; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); // Copy and push current Gnss_Synchro to monitor queue if (d_enable_monitor_output) { auto **out = reinterpret_cast(&output_items[0]); Gnss_Synchro current_synchro_data = Gnss_Synchro(); current_synchro_data = *d_gnss_synchro; *out[0] = std::move(current_synchro_data); noutput_items = 1; // Number of Gnss_Synchro objects produced } break; } case 3: { // 6.2- Declare negative acquisition using a message port DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += static_cast(d_fft_size) * ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 2; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); break; } } return noutput_items; }