/*! * \file galileo_e5_signal_processing.cc * \brief This library implements various functions for Galileo E5 signals such * as replica code generation * \author Marc Sales, 2014. marcsales92(at)gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e5_signal_processing.h" void galileo_e5_a_code_gen_complex(std::complex* _dest, signed int _prn, char _Signal[3]) { std::string _galileo_signal = _Signal; unsigned int prn=_prn-1; unsigned int index=0; //int _code_int[(int)Galileo_E5a_CODE_LENGTH_CHIPS]; int a[4]; if ((_prn < 1) || (_prn > 50)) { return; } if (_galileo_signal.rfind("5Q") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length(); i++) { // hex_to_binary_converter(&_dest[index], // Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); // hex_to_binary_converter(&_code_int[index], // Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); hex_to_binary_converter(&a[0], Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(float(a[0]),0.0); _dest[index+1]=std::complex(float(a[1]),0.0); _dest[index+2]=std::complex(float(a[2]),0.0); _dest[index+3]=std::complex(float(a[3]),0.0); index = index + 4; } } else if (_galileo_signal.rfind("5I") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length(); i++) { // hex_to_binary_converter(&_code_int[index], // Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); hex_to_binary_converter(&a[0], Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(float(a[0]),0.0); _dest[index+1]=std::complex(float(a[1]),0.0); _dest[index+2]=std::complex(float(a[2]),0.0); _dest[index+3]=std::complex(float(a[3]),0.0); index = index + 4; } } } void galileo_e5_a_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], unsigned int _prn, signed int _fs, unsigned int _chip_shift, bool _secondary_flag) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book std::complex _code[Galileo_E5a_CODE_LENGTH_CHIPS]; std::string _galileo_signal = _Signal; signed int _samplesPerCode, _codeValueIndex; float _ts; float _tc; const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; //Hz unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS; std::complex primary_code_E5a_chips[(int)Galileo_E5a_CODE_LENGTH_CHIPS]; _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength)); const unsigned int delay = (((int)Galileo_E5a_CODE_LENGTH_CHIPS - _chip_shift) % (int)Galileo_E5a_CODE_LENGTH_CHIPS) * _samplesPerCode / Galileo_E5a_CODE_LENGTH_CHIPS; galileo_e5_a_code_gen_complex(_code , _prn , _Signal); if (_fs != _codeFreqBasis) { std::complex* _resampled_signal = new std::complex[_codeLength]; resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs delete[] _code; _code = _resampled_signal; } // TODO secundary code generated here?? for (unsigned int i = 0; i < _samplesPerCode; i++) { _dest[(i+delay)%_samplesPerCode] = _code[i]; } delete[] _code; }