/*! * \file gps_pcps_acquisition_fpga_sc.cc * \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA. * This file is based on the file gps_pcps_acquisition_sc.cc * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_pcps_acquisition_fpga_sc.h" #include #include #include #include #include #include #include "control_message_factory.h" #include "GPS_L1_CA.h" //GPS_TWO_PI using google::LogMessage; void wait3(int seconds) { boost::this_thread::sleep_for(boost::chrono::seconds { seconds }); } gps_pcps_acquisition_fpga_sc_sptr gps_pcps_make_acquisition_fpga_sc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, int vector_length, unsigned int nsamples_total, bool bit_transition_flag, bool use_CFAR_algorithm_flag, unsigned int select_queue_Fpga, std::string device_name, bool dump, std::string dump_filename) { return gps_pcps_acquisition_fpga_sc_sptr( new gps_pcps_acquisition_fpga_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, samples_per_code, vector_length, nsamples_total, bit_transition_flag, use_CFAR_algorithm_flag, select_queue_Fpga, device_name, dump, dump_filename)); } gps_pcps_acquisition_fpga_sc::gps_pcps_acquisition_fpga_sc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, int vector_length, unsigned int nsamples_total, bool bit_transition_flag, bool use_CFAR_algorithm_flag, unsigned int select_queue_Fpga, std::string device_name, bool dump, std::string dump_filename) : gr::block("pcps_acquisition_fpga_sc", gr::io_signature::make(0, 0, sizeof(lv_16sc_t)), gr::io_signature::make(0, 0, 0)) { this->message_port_register_out(pmt::mp("events")); d_sample_counter = 0; // SAMPLE COUNTER d_active = false; d_state = 0; d_samples_per_code = samples_per_code; d_max_dwells = max_dwells; // Note : d_max_dwells is not used in the FPGA implementation d_well_count = 0; d_doppler_max = doppler_max; d_fft_size = sampled_ms * samples_per_ms; d_mag = 0; d_num_doppler_bins = 0; d_bit_transition_flag = bit_transition_flag; // Note : bit transition flag is ignored and assumed 0 in the FPGA implementation d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; // Note : user CFAR algorithm flag is ignored and assumed 0 in the FPGA implementation d_threshold = 0.0; d_doppler_step = 250; d_channel = 0; // For dumping samples into a file d_dump = dump; d_dump_filename = dump_filename; d_gnss_synchro = 0; // instantiate HW accelerator class acquisition_fpga_8sc = std::make_shared < gps_fpga_acquisition_8sc > (device_name, vector_length, d_fft_size, nsamples_total, fs_in, freq, sampled_ms, select_queue_Fpga); } gps_pcps_acquisition_fpga_sc::~gps_pcps_acquisition_fpga_sc() { if (d_dump) { d_dump_file.close(); } acquisition_fpga_8sc->free(); } void gps_pcps_acquisition_fpga_sc::set_local_code() { acquisition_fpga_8sc->set_local_code(d_gnss_synchro->PRN); } void gps_pcps_acquisition_fpga_sc::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_mag = 0.0; d_num_doppler_bins = ceil( static_cast(static_cast(d_doppler_max) - static_cast(-d_doppler_max)) / static_cast(d_doppler_step)); acquisition_fpga_8sc->open_device(); acquisition_fpga_8sc->init(); } void gps_pcps_acquisition_fpga_sc::set_state(int state) { d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_well_count = 0; d_mag = 0.0; } else if (d_state == 0) { } else { LOG(ERROR) << "State can only be set to 0 or 1"; } } void gps_pcps_acquisition_fpga_sc::set_active(bool active) { float temp_peak_to_noise_level = 0.0; float peak_to_noise_level = 0.0; float input_power; float test_statistics = 0.0; acquisition_fpga_8sc->block_samples(); // block the samples to run the acquisition this is only necessary for the tests d_active = active; int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL d_state = 1; // initialize acquisition algorithm int doppler; uint32_t indext = 0; float magt = 0.0; //int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size ); int effective_fft_size = d_fft_size; //float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_mag = 0.0; unsigned int initial_sample; d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " ,sample stamp: " << d_sample_counter << ", threshold: " << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step; // Doppler frequency search loop for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; acquisition_fpga_8sc->set_phase_step(doppler_index); acquisition_fpga_8sc->run_acquisition(); // runs acquisition and waits until it is finished acquisition_fpga_8sc->read_acquisition_results(&indext, &magt, &initial_sample, &input_power); d_sample_counter = initial_sample; temp_peak_to_noise_level = (float) (magt / input_power); if (peak_to_noise_level < temp_peak_to_noise_level) { peak_to_noise_level = temp_peak_to_noise_level; d_mag = magt; input_power = (input_power - d_mag) / (effective_fft_size - 1); d_gnss_synchro->Acq_delay_samples = static_cast(indext % d_samples_per_code); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; test_statistics = d_mag / input_power; } // Record results to file if required if (d_dump) { std::stringstream filename; //std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write filename.str(""); boost::filesystem::path p = d_dump_filename; filename << p.parent_path().string() << boost::filesystem::path::preferred_separator << p.stem().string() << "_" << d_gnss_synchro->System << "_" << d_gnss_synchro->Signal << "_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << p.extension().string(); DLOG(INFO) << "Writing ACQ out to " << filename.str(); d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.close(); } } if (test_statistics > d_threshold) { d_state = 2; // Positive acquisition // 6.1- Declare positive acquisition using a message port DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << input_power; d_active = false; d_state = 0; acquisition_message = 1; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); } else { d_state = 3; // Negative acquisition // 6.2- Declare negative acquisition using a message port DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << input_power; d_active = false; d_state = 0; acquisition_message = 2; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); } acquisition_fpga_8sc->unblock_samples(); acquisition_fpga_8sc->close_device(); DLOG(INFO) << "Done. Consumed 1 item."; } int gps_pcps_acquisition_fpga_sc::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items __attribute__((unused))) { // general work not used with the acquisition return noutput_items; }