/*!
* \file lock_detectors.cc
* \brief Implementation of a library with a set of code and carrier phase lock detectors.
*
* SNV_CN0 is a Carrier-to-Noise (CN0) estimator
* based on the Signal-to-Noise Variance (SNV) estimator [1].
* Carrier lock detector using normalised estimate of the cosine
* of twice the carrier phase error [2].
*
* [1] Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
* IEEE 10th International Symposium on Spread Spectrum Techniques and
* Applications, pp.28-30, August 2008.
*
* [2] Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
* Applications,
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
* Inc.: 329-407.
* \authors
* - Javier Arribas, 2011. jarribas(at)cttc.es
*
- Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "lock_detectors.h"
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
/*
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
* \f}
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*
* The SNR value is converted to CN0 [dB-Hz], taking to account the receiver bandwidth and the PRN code gain, using the following formula:
* \f{equation}
* CN0_{dB}=10*log(\hat{\rho})+10*log(\frac{f_s}{2})-10*log(L_{PRN}),
* \f}
* where \f$f_s\f$ is the sampling frequency and \f$L_{PRN}\f$ is the PRN sequence length.
*
*/
float cn0_svn_estimator(gr_complex* Prompt_buffer, int length, long fs_in, double code_length)
{
float SNR = 0;
float SNR_dB_Hz = 0;
float Psig = 0;
float Ptot = 0;
for (int i=0; i