; Default configuration file ; You can define your own receiver and invoke it by doing ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second]. GNSS-SDR.internal_fs_sps=32000000 ;######### SUPL RRLP GPS assistance configuration ##### ; Check http://www.mcc-mnc.com/ ; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en ;GNSS-SDR.SUPL_gps_enabled=false ;GNSS-SDR.SUPL_read_gps_assistance_xml=false ;GNSS-SDR.SUPL_gps_ephemeris_server=supl.google.com ;GNSS-SDR.SUPL_gps_ephemeris_port=7275 ;GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com ;GNSS-SDR.SUPL_gps_acquisition_port=7275 ;GNSS-SDR.SUPL_MCC=244 ;GNSS-SDR.SUPL_MNS=5 ;GNSS-SDR.SUPL_LAC=0x59e2 ;GNSS-SDR.SUPL_CI=0x31b0 ;######### SIGNAL_SOURCE CONFIG ############ ;#implementation SignalSource.implementation=File_Signal_Source ;#filename: path to file with the captured GNSS signal samples to be processed SignalSource.filename=/datalogger/signals/ifen/32MS_complex.dat ; <- PUT YOUR FILE HERE ;#item_type: Type and resolution for each of the signal samples. SignalSource.item_type=gr_complex ;#sampling_frequency: Original Signal sampling frequency in samples per second SignalSource.sampling_frequency=32000000 ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. SignalSource.samples=0 ;#repeat: Repeat the processing file. SignalSource.repeat=false ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. ; it helps to not overload the CPU, but the processing time will be longer. SignalSource.enable_throttle_control=false ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;SignalConditioner.implementation=Signal_Conditioner SignalConditioner.implementation=Pass_Through ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. ;#implementation: [Pass_Through] disables this block DataTypeAdapter.implementation=Pass_Through ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: ;#[Pass_Through] disables this block ;#[Fir_Filter] enables a FIR Filter ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. ;InputFilter.implementation=Fir_Filter ;InputFilter.implementation=Freq_Xlating_Fir_Filter InputFilter.implementation=Pass_Through ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, ;#the desired response on those bands, and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. InputFilter.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 InputFilter.band1_end=0.45 InputFilter.band2_begin=0.55 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.sampling_frequency=32000000 InputFilter.IF=0 ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=../data/input_filter.dat ;######### RESAMPLER CONFIG ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation ;Resampler.implementation=Direct_Resampler Resampler.implementation=Pass_Through ;#item_type: Type and resolution for each of the signal samples. Resampler.item_type=gr_complex ;#sample_freq_in: the sample frequency of the input signal Resampler.sample_freq_in=8000000 ;#sample_freq_out: the desired sample frequency of the output signal Resampler.sample_freq_out=4000000 ;#dump: Dump the resamplered data to a file. Resampler.dump=false ;#dump_filename: Log path and filename. Resampler.dump_filename=../data/resampler.dat ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available satellite channels. Channels_5X.count=1 ;#in_acquisition: Number of channels simultaneously acquiring Channels.in_acquisition=1 ;#system: GPS, GLONASS, Galileo, SBAS or Compass ;#if the option is disabled by default is assigned GPS Channel.signal=5X ;######### SPECIFIC CHANNELS CONFIG ###### ;#The following options are specific to each channel and overwrite the generic options ;######### CHANNEL 0 CONFIG ############ ;Channel0.signal=5X ;#satellite: Satellite PRN ID for this channel. Disable this option to random search ;Channel0.satellite=19 ;Channel0.repeat_satellite=true ;######### CHANNEL 1 CONFIG ############ ;Channel1.system=Galileo ;Channel1.signal=5Q ;Channel1.satellite=12 ;######### CHANNEL 2 CONFIG ############ ;Channel2.system=Galileo ;Channel2.signal=5Q ;Channel2.satellite=11 ;######### CHANNEL 3 CONFIG ############ ;Channel3.system=Galileo ;Channel3.signal=5Q ;Channel3.satellite=20 ;######### ACQUISITION GLOBAL CONFIG ############ Acquisition_5X.implementation=Galileo_E5a_Noncoherent_IQ_Acquisition_CAF ;#item_type: Type and resolution for each of the signal samples. Acquisition_5X.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_5X.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_5X.coherent_integration_time_ms=1 ;#threshold: Acquisition threshold. It will be ignored if pfa is defined. Acquisition_5X.threshold=0.001 ;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] Acquisition_5X.pfa=0.0003 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_5X.doppler_max=10000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_5X.doppler_step=250 ;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take ;maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition]) Acquisition_5X.bit_transition_flag=false ;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true Acquisition_5X.max_dwells=1 ;#CAF filter: **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is desactivated. Recommended value 3000 Hz Acquisition_5X.CAF_window_hz=0 ;#Zero_padding: **Only for E5a** Avoids power loss and doppler ambiguity in bit transitions by correlating one code with twice the input data length, ensuring that at least one full code is present without transitions. ;#If set to 1 it is ON, if set to 0 it is OFF. Acquisition_5X.Zero_padding=0 ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_5X.dump=true ;#filename: Log path and filename Acquisition_5X.dump_filename=./acq_dump.dat ;######### TRACKING GLOBAL CONFIG ############ Tracking_5X.implementation=Galileo_E5a_DLL_PLL_Tracking ;#item_type: Type and resolution for each of the signal samples. Tracking_5X.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_5X.if=0 ;#dll_ti_ms: **Only for E5a** loop filter integration time after initialization (secondary code delay search)[ms] ;Tracking_5X.ti_ms=3; Tracking_5X.ti_ms=1; ;#pll_bw_hz: PLL loop filter bandwidth during initialization [Hz] Tracking_5X.pll_bw_hz=20.0; ;#dll_bw_hz: DLL loop filter bandwidth during initialization [Hz] Tracking_5X.dll_bw_hz=20.0; Tracking_5X.pll_bw_narrow_hz=2.0; Tracking_5X.dll_bw_narrow_hz=5.0; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_5X.order=2; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] Tracking_5X.early_late_space_chips=0.5; ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_5X.dump=true ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_5X.dump_filename=./tracking_ch_ ;######### TELEMETRY DECODER CONFIG ############ ;#implementation: TelemetryDecoder_5X.implementation=Galileo_E5a_Telemetry_Decoder TelemetryDecoder_5X.dump=false ;######### OBSERVABLES CONFIG ############ ;#implementation: Observables.implementation=Hybrid_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ ;#implementation: Position Velocity and Time (PVT) implementation algorithm: PVT.implementation=RTKLIB_PVT PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time [ms] PVT.output_rate_ms=100 ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. PVT.display_rate_ms=500 ;# KML, GeoJSON, NMEA and RTCM output configuration ;#nmea_dump_filename: NMEA log path and filename PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea; ;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one) PVT.flag_nmea_tty_port=true; ;#nmea_dump_devname: serial device descriptor for NMEA logging PVT.nmea_dump_devname=/dev/pts/4 PVT.flag_rtcm_server=false PVT.flag_rtcm_tty_port=false PVT.rtcm_dump_devname=/dev/pts/1 ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] PVT.dump=false ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. PVT.dump_filename=./PVT