/*!
* \file rtklib_solver.cc
* \brief PVT solver based on rtklib library functions adapted to the GNSS-SDR
* data flow and structures
* \authors
* - 2017-2019, Javier Arribas
*
- 2017-2019, Carles Fernandez
*
- 2007-2013, T. Takasu
*
*
* This is a derived work from RTKLIB http://www.rtklib.com/
* The original source code at https://github.com/tomojitakasu/RTKLIB is
* released under the BSD 2-clause license with an additional exclusive clause
* that does not apply here. This additional clause is reproduced below:
*
* " The software package includes some companion executive binaries or shared
* libraries necessary to execute APs on Windows. These licenses succeed to the
* original ones of these software. "
*
* Neither the executive binaries nor the shared libraries are required by, used
* or included in GNSS-SDR.
*
* -----------------------------------------------------------------------------
* Copyright (C) 2007-2013, T. Takasu
* Copyright (C) 2017-2019, Javier Arribas
* Copyright (C) 2017-2019, Carles Fernandez
* All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause
*
* -----------------------------------------------------------------------*/
#include "rtklib_solver.h"
#include "Beidou_DNAV.h"
#include "gnss_sdr_filesystem.h"
#include "rtklib_conversions.h"
#include "rtklib_rtkpos.h"
#include "rtklib_solution.h"
#include
#include
#include
#include
#include
Rtklib_Solver::Rtklib_Solver(const rtk_t &rtk,
const std::string &dump_filename,
bool flag_dump_to_file,
bool flag_dump_to_mat) : d_rtk(rtk),
d_dump_filename(dump_filename),
d_flag_dump_enabled(flag_dump_to_file),
d_flag_dump_mat_enabled(flag_dump_to_mat)
{
this->set_averaging_flag(false);
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions(std::ofstream::failbit | std::ofstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ofstream::failure &e)
{
LOG(WARNING) << "Exception opening RTKLIB dump file " << e.what();
}
}
}
}
Rtklib_Solver::~Rtklib_Solver()
{
DLOG(INFO) << "Rtklib_Solver destructor called.";
if (d_dump_file.is_open() == true)
{
const auto pos = d_dump_file.tellp();
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor closing the RTKLIB dump file " << ex.what();
}
if (pos == 0)
{
errorlib::error_code ec;
if (!fs::remove(fs::path(d_dump_filename), ec))
{
std::cerr << "Problem removing temporary file " << d_dump_filename << '\n';
}
d_flag_dump_mat_enabled = false;
}
}
if (d_flag_dump_mat_enabled)
{
try
{
save_matfile();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor saving the PVT .mat dump file " << ex.what();
}
}
}
bool Rtklib_Solver::save_matfile() const
{
// READ DUMP FILE
const std::string dump_filename = d_dump_filename;
const int32_t number_of_double_vars = 21;
const int32_t number_of_uint32_vars = 2;
const int32_t number_of_uint8_vars = 3;
const int32_t number_of_float_vars = 2;
const int32_t epoch_size_bytes = sizeof(double) * number_of_double_vars +
sizeof(uint32_t) * number_of_uint32_vars +
sizeof(uint8_t) * number_of_uint8_vars +
sizeof(float) * number_of_float_vars;
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << '\n';
return false;
}
// count number of epochs and rewind
int64_t num_epoch = 0LL;
if (dump_file.is_open())
{
std::cout << "Generating .mat file for " << dump_filename << '\n';
const std::ifstream::pos_type size = dump_file.tellg();
num_epoch = static_cast(size) / static_cast(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return false;
}
auto TOW_at_current_symbol_ms = std::vector(num_epoch);
auto week = std::vector(num_epoch);
auto RX_time = std::vector(num_epoch);
auto user_clk_offset = std::vector(num_epoch);
auto pos_x = std::vector(num_epoch);
auto pos_y = std::vector(num_epoch);
auto pos_z = std::vector(num_epoch);
auto vel_x = std::vector(num_epoch);
auto vel_y = std::vector(num_epoch);
auto vel_z = std::vector(num_epoch);
auto cov_xx = std::vector(num_epoch);
auto cov_yy = std::vector(num_epoch);
auto cov_zz = std::vector(num_epoch);
auto cov_xy = std::vector(num_epoch);
auto cov_yz = std::vector(num_epoch);
auto cov_zx = std::vector(num_epoch);
auto latitude = std::vector(num_epoch);
auto longitude = std::vector(num_epoch);
auto height = std::vector(num_epoch);
auto valid_sats = std::vector(num_epoch);
auto solution_status = std::vector(num_epoch);
auto solution_type = std::vector(num_epoch);
auto AR_ratio_factor = std::vector(num_epoch);
auto AR_ratio_threshold = std::vector(num_epoch);
auto gdop = std::vector(num_epoch);
auto pdop = std::vector(num_epoch);
auto hdop = std::vector(num_epoch);
auto vdop = std::vector(num_epoch);
try
{
if (dump_file.is_open())
{
for (int64_t i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast(&TOW_at_current_symbol_ms[i]), sizeof(uint32_t));
dump_file.read(reinterpret_cast(&week[i]), sizeof(uint32_t));
dump_file.read(reinterpret_cast(&RX_time[i]), sizeof(double));
dump_file.read(reinterpret_cast(&user_clk_offset[i]), sizeof(double));
dump_file.read(reinterpret_cast(&pos_x[i]), sizeof(double));
dump_file.read(reinterpret_cast(&pos_y[i]), sizeof(double));
dump_file.read(reinterpret_cast(&pos_z[i]), sizeof(double));
dump_file.read(reinterpret_cast(&vel_x[i]), sizeof(double));
dump_file.read(reinterpret_cast(&vel_y[i]), sizeof(double));
dump_file.read(reinterpret_cast(&vel_z[i]), sizeof(double));
dump_file.read(reinterpret_cast(&cov_xx[i]), sizeof(double));
dump_file.read(reinterpret_cast(&cov_yy[i]), sizeof(double));
dump_file.read(reinterpret_cast(&cov_zz[i]), sizeof(double));
dump_file.read(reinterpret_cast(&cov_xy[i]), sizeof(double));
dump_file.read(reinterpret_cast(&cov_yz[i]), sizeof(double));
dump_file.read(reinterpret_cast(&cov_zx[i]), sizeof(double));
dump_file.read(reinterpret_cast(&latitude[i]), sizeof(double));
dump_file.read(reinterpret_cast(&longitude[i]), sizeof(double));
dump_file.read(reinterpret_cast(&height[i]), sizeof(double));
dump_file.read(reinterpret_cast(&valid_sats[i]), sizeof(uint8_t));
dump_file.read(reinterpret_cast(&solution_status[i]), sizeof(uint8_t));
dump_file.read(reinterpret_cast(&solution_type[i]), sizeof(uint8_t));
dump_file.read(reinterpret_cast(&AR_ratio_factor[i]), sizeof(float));
dump_file.read(reinterpret_cast(&AR_ratio_threshold[i]), sizeof(float));
dump_file.read(reinterpret_cast(&gdop[i]), sizeof(double));
dump_file.read(reinterpret_cast(&pdop[i]), sizeof(double));
dump_file.read(reinterpret_cast(&hdop[i]), sizeof(double));
dump_file.read(reinterpret_cast(&vdop[i]), sizeof(double));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << '\n';
return false;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73);
if (reinterpret_cast(matfp) != nullptr)
{
std::array dims{1, static_cast(num_epoch)};
matvar = Mat_VarCreate("TOW_at_current_symbol_ms", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), TOW_at_current_symbol_ms.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("week", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), week.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), RX_time.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("user_clk_offset", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), user_clk_offset.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("pos_x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pos_x.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("pos_y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pos_y.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("pos_z", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pos_z.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("vel_x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vel_x.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("vel_y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vel_y.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("vel_z", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vel_z.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("cov_xx", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_xx.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("cov_yy", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_yy.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("cov_zz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_zz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("cov_xy", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_xy.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("cov_yz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_yz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("cov_zx", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_zx.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("latitude", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), latitude.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("longitude", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), longitude.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("height", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), height.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("valid_sats", MAT_C_UINT8, MAT_T_UINT8, 2, dims.data(), valid_sats.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("solution_status", MAT_C_UINT8, MAT_T_UINT8, 2, dims.data(), solution_status.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("solution_type", MAT_C_UINT8, MAT_T_UINT8, 2, dims.data(), solution_type.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("AR_ratio_factor", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), AR_ratio_factor.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("AR_ratio_threshold", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), AR_ratio_threshold.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("gdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), gdop.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("pdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pdop.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("hdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), hdop.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("vdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vdop.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
return true;
}
double Rtklib_Solver::get_gdop() const
{
return d_dop[0];
}
double Rtklib_Solver::get_pdop() const
{
return d_dop[1];
}
double Rtklib_Solver::get_hdop() const
{
return d_dop[2];
}
double Rtklib_Solver::get_vdop() const
{
return d_dop[3];
}
Monitor_Pvt Rtklib_Solver::get_monitor_pvt() const
{
return d_monitor_pvt;
}
bool Rtklib_Solver::get_PVT(const std::map &gnss_observables_map, bool flag_averaging)
{
std::map::const_iterator gnss_observables_iter;
std::map::const_iterator galileo_ephemeris_iter;
std::map::const_iterator gps_ephemeris_iter;
std::map::const_iterator gps_cnav_ephemeris_iter;
std::map::const_iterator glonass_gnav_ephemeris_iter;
std::map::const_iterator beidou_ephemeris_iter;
const Glonass_Gnav_Utc_Model gnav_utc = this->glonass_gnav_utc_model;
this->set_averaging_flag(flag_averaging);
// ********************************************************************************
// ****** PREPARE THE DATA (SV EPHEMERIS AND OBSERVATIONS) ************************
// ********************************************************************************
int valid_obs = 0; // valid observations counter
int glo_valid_obs = 0; // GLONASS L1/L2 valid observations counter
d_obs_data.fill({});
std::vector eph_data(MAXOBS);
std::vector geph_data(MAXOBS);
// Workaround for NAV/CNAV clash problem
bool gps_dual_band = false;
bool band1 = false;
bool band2 = false;
for (gnss_observables_iter = gnss_observables_map.cbegin();
gnss_observables_iter != gnss_observables_map.cend();
++gnss_observables_iter)
{
switch (gnss_observables_iter->second.System)
{
case 'G':
{
const std::string sig_(gnss_observables_iter->second.Signal);
if (sig_ == "1C")
{
band1 = true;
}
if (sig_ == "2S")
{
band2 = true;
}
}
break;
default:
{
}
}
}
if (band1 == true and band2 == true)
{
gps_dual_band = true;
}
for (gnss_observables_iter = gnss_observables_map.cbegin();
gnss_observables_iter != gnss_observables_map.cend();
++gnss_observables_iter) // CHECK INCONSISTENCY when combining GLONASS + other system
{
switch (gnss_observables_iter->second.System)
{
case 'E':
{
const std::string sig_(gnss_observables_iter->second.Signal);
// Galileo E1
if (sig_ == "1B")
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs{};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
galileo_ephemeris_iter->second.WN,
0);
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
// Galileo E5
if (sig_ == "5X")
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.cend())
{
bool found_E1_obs = false;
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == (static_cast(gnss_observables_iter->second.PRN + NSATGPS + NSATGLO)))
{
d_obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(d_obs_data[i + glo_valid_obs],
gnss_observables_iter->second,
galileo_ephemeris_iter->second.WN,
2); // Band 3 (L5/E5)
found_E1_obs = true;
break;
}
}
if (!found_E1_obs)
{
// insert Galileo E5 obs as new obs and also insert its ephemeris
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
const auto default_code_ = static_cast(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
galileo_ephemeris_iter->second.WN,
2); // Band 3 (L5/E5)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
case 'G':
{
// GPS L1
// 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
const std::string sig_(gnss_observables_iter->second.Signal);
if (sig_ == "1C")
{
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_ephemeris_iter->second, this->is_pre_2009());
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs{};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
gps_ephemeris_iter->second.WN,
0,
this->is_pre_2009());
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
}
}
// GPS L2 (todo: solve NAV/CNAV clash)
if ((sig_ == "2S") and (gps_dual_band == false))
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.cend())
{
// 1. Find the same satellite in GPS L1 band
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
{
/* By the moment, GPS L2 observables are not used in pseudorange computations if GPS L1 is available
// 2. If found, replace the existing GPS L1 ephemeris with the GPS L2 ephemeris
// (more precise!), and attach the L2 observation to the L1 observation in RTKLIB structure
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == static_cast(gnss_observables_iter->second.PRN))
{
eph_data[i] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
d_obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(d_obs_data[i + glo_valid_obs],
gnss_observables_iter->second,
eph_data[i].week,
1); // Band 2 (L2)
break;
}
}
*/
}
else
{
// 3. If not found, insert the GPS L2 ephemeris and the observation
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
const auto default_code_ = static_cast(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
gps_cnav_ephemeris_iter->second.WN,
1); // Band 2 (L2)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
// GPS L5
if (sig_ == "L5")
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.cend())
{
// 1. Find the same satellite in GPS L1 band
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
{
// 2. If found, replace the existing GPS L1 ephemeris with the GPS L5 ephemeris
// (more precise!), and attach the L5 observation to the L1 observation in RTKLIB structure
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == static_cast(gnss_observables_iter->second.PRN))
{
eph_data[i] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
d_obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(d_obs_data[i],
gnss_observables_iter->second,
gps_cnav_ephemeris_iter->second.WN,
2); // Band 3 (L5)
break;
}
}
}
else
{
// 3. If not found, insert the GPS L5 ephemeris and the observation
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
const auto default_code_ = static_cast(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
gps_cnav_ephemeris_iter->second.WN,
2); // Band 3 (L5)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
case 'R': // TODO This should be using rtk lib nomenclature
{
const std::string sig_(gnss_observables_iter->second.Signal);
// GLONASS GNAV L1
if (sig_ == "1G")
{
// 1 Glo - find the ephemeris for the current GLONASS SV observation. The SV Slot Number (PRN ID) is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs{};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
0); // Band 0 (L1)
glo_valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
// GLONASS GNAV L2
if (sig_ == "2G")
{
// 1 GLONASS - find the ephemeris for the current GLONASS SV observation. The SV PRN ID is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
bool found_L1_obs = false;
for (int i = 0; i < glo_valid_obs; i++)
{
if (geph_data[i].sat == (static_cast(gnss_observables_iter->second.PRN + NSATGPS)))
{
d_obs_data[i + valid_obs] = insert_obs_to_rtklib(d_obs_data[i + valid_obs],
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1); // Band 1 (L2)
found_L1_obs = true;
break;
}
}
if (!found_L1_obs)
{
// insert GLONASS GNAV L2 obs as new obs and also insert its ephemeris
// convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs{};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1); // Band 1 (L2)
glo_valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
case 'C':
{
// BEIDOU B1I
// - find the ephemeris for the current BEIDOU SV observation. The SV PRN ID is the map key
const std::string sig_(gnss_observables_iter->second.Signal);
if (sig_ == "B1")
{
beidou_ephemeris_iter = beidou_dnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (beidou_ephemeris_iter != beidou_dnav_ephemeris_map.cend())
{
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(beidou_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs{};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
beidou_ephemeris_iter->second.WN + BEIDOU_DNAV_BDT2GPST_WEEK_NUM_OFFSET,
0);
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
}
}
// BeiDou B3
if (sig_ == "B3")
{
beidou_ephemeris_iter = beidou_dnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (beidou_ephemeris_iter != beidou_dnav_ephemeris_map.cend())
{
bool found_B1I_obs = false;
for (int i = 0; i < valid_obs; i++)
{
if (eph_data[i].sat == (static_cast(gnss_observables_iter->second.PRN + NSATGPS + NSATGLO + NSATGAL + NSATQZS)))
{
d_obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(d_obs_data[i + glo_valid_obs],
gnss_observables_iter->second,
beidou_ephemeris_iter->second.WN + BEIDOU_DNAV_BDT2GPST_WEEK_NUM_OFFSET,
2); // Band 3 (L2/G2/B3)
found_B1I_obs = true;
break;
}
}
if (!found_B1I_obs)
{
// insert BeiDou B3I obs as new obs and also insert its ephemeris
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(beidou_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
const auto default_code_ = static_cast(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
d_obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
beidou_ephemeris_iter->second.WN + BEIDOU_DNAV_BDT2GPST_WEEK_NUM_OFFSET,
2); // Band 2 (L2/G2)
valid_obs++;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
default:
DLOG(INFO) << "Hybrid observables: Unknown GNSS";
break;
}
}
// **********************************************************************
// ****** SOLVE PVT******************************************************
// **********************************************************************
this->set_valid_position(false);
if ((valid_obs + glo_valid_obs) > 3)
{
int result = 0;
nav_t nav_data{};
nav_data.eph = eph_data.data();
nav_data.geph = geph_data.data();
nav_data.n = valid_obs;
nav_data.ng = glo_valid_obs;
if (gps_iono.valid)
{
nav_data.ion_gps[0] = gps_iono.alpha0;
nav_data.ion_gps[1] = gps_iono.alpha1;
nav_data.ion_gps[2] = gps_iono.alpha2;
nav_data.ion_gps[3] = gps_iono.alpha3;
nav_data.ion_gps[4] = gps_iono.beta0;
nav_data.ion_gps[5] = gps_iono.beta1;
nav_data.ion_gps[6] = gps_iono.beta2;
nav_data.ion_gps[7] = gps_iono.beta3;
}
if (!(gps_iono.valid) and gps_cnav_iono.valid)
{
nav_data.ion_gps[0] = gps_cnav_iono.alpha0;
nav_data.ion_gps[1] = gps_cnav_iono.alpha1;
nav_data.ion_gps[2] = gps_cnav_iono.alpha2;
nav_data.ion_gps[3] = gps_cnav_iono.alpha3;
nav_data.ion_gps[4] = gps_cnav_iono.beta0;
nav_data.ion_gps[5] = gps_cnav_iono.beta1;
nav_data.ion_gps[6] = gps_cnav_iono.beta2;
nav_data.ion_gps[7] = gps_cnav_iono.beta3;
}
if (galileo_iono.ai0 != 0.0)
{
nav_data.ion_gal[0] = galileo_iono.ai0;
nav_data.ion_gal[1] = galileo_iono.ai1;
nav_data.ion_gal[2] = galileo_iono.ai2;
nav_data.ion_gal[3] = 0.0;
}
if (beidou_dnav_iono.valid)
{
nav_data.ion_cmp[0] = beidou_dnav_iono.alpha0;
nav_data.ion_cmp[1] = beidou_dnav_iono.alpha1;
nav_data.ion_cmp[2] = beidou_dnav_iono.alpha2;
nav_data.ion_cmp[3] = beidou_dnav_iono.alpha3;
nav_data.ion_cmp[4] = beidou_dnav_iono.beta0;
nav_data.ion_cmp[5] = beidou_dnav_iono.beta0;
nav_data.ion_cmp[6] = beidou_dnav_iono.beta0;
nav_data.ion_cmp[7] = beidou_dnav_iono.beta3;
}
if (gps_utc_model.valid)
{
nav_data.utc_gps[0] = gps_utc_model.A0;
nav_data.utc_gps[1] = gps_utc_model.A1;
nav_data.utc_gps[2] = gps_utc_model.tot;
nav_data.utc_gps[3] = gps_utc_model.WN_T;
nav_data.leaps = gps_utc_model.DeltaT_LS;
}
if (!(gps_utc_model.valid) and gps_cnav_utc_model.valid)
{
nav_data.utc_gps[0] = gps_cnav_utc_model.A0;
nav_data.utc_gps[1] = gps_cnav_utc_model.A1;
nav_data.utc_gps[2] = gps_cnav_utc_model.tot;
nav_data.utc_gps[3] = gps_cnav_utc_model.WN_T;
nav_data.leaps = gps_cnav_utc_model.DeltaT_LS;
}
if (glonass_gnav_utc_model.valid)
{
nav_data.utc_glo[0] = glonass_gnav_utc_model.d_tau_c; // ??
nav_data.utc_glo[1] = 0.0; // ??
nav_data.utc_glo[2] = 0.0; // ??
nav_data.utc_glo[3] = 0.0; // ??
}
if (galileo_utc_model.A0 != 0.0)
{
nav_data.utc_gal[0] = galileo_utc_model.A0;
nav_data.utc_gal[1] = galileo_utc_model.A1;
nav_data.utc_gal[2] = galileo_utc_model.tot;
nav_data.utc_gal[3] = galileo_utc_model.WNot;
nav_data.leaps = galileo_utc_model.Delta_tLS;
}
if (beidou_dnav_utc_model.valid)
{
nav_data.utc_cmp[0] = beidou_dnav_utc_model.A0_UTC;
nav_data.utc_cmp[1] = beidou_dnav_utc_model.A1_UTC;
nav_data.utc_cmp[2] = 0.0; // ??
nav_data.utc_cmp[3] = 0.0; // ??
nav_data.leaps = beidou_dnav_utc_model.DeltaT_LS;
}
/* update carrier wave length using native function call in RTKlib */
for (int i = 0; i < MAXSAT; i++)
{
for (int j = 0; j < NFREQ; j++)
{
nav_data.lam[i][j] = satwavelen(i + 1, j, &nav_data);
}
}
result = rtkpos(&d_rtk, d_obs_data.data(), valid_obs + glo_valid_obs, &nav_data);
if (result == 0)
{
LOG(INFO) << "RTKLIB rtkpos error: " << d_rtk.errbuf;
d_rtk.neb = 0; // clear error buffer to avoid repeating the error message
this->set_time_offset_s(0.0); // reset rx time estimation
this->set_num_valid_observations(0);
}
else
{
this->set_num_valid_observations(d_rtk.sol.ns); // record the number of valid satellites used by the PVT solver
pvt_sol = d_rtk.sol;
// DOP computation
unsigned int used_sats = 0;
for (unsigned int i = 0; i < MAXSAT; i++)
{
pvt_ssat[i] = d_rtk.ssat[i];
if (d_rtk.ssat[i].vs == 1)
{
used_sats++;
}
}
std::vector azel(used_sats * 2);
int index_aux = 0;
for (auto &i : d_rtk.ssat)
{
if (i.vs == 1)
{
azel[2 * index_aux] = i.azel[0];
azel[2 * index_aux + 1] = i.azel[1];
index_aux++;
}
}
if (index_aux > 0)
{
dops(index_aux, azel.data(), 0.0, d_dop.data());
}
this->set_valid_position(true);
std::array rx_position_and_time{};
rx_position_and_time[0] = pvt_sol.rr[0]; // [m]
rx_position_and_time[1] = pvt_sol.rr[1]; // [m]
rx_position_and_time[2] = pvt_sol.rr[2]; // [m]
// todo: fix this ambiguity in the RTKLIB units in receiver clock offset!
if (d_rtk.opt.mode == PMODE_SINGLE)
{
// if the RTKLIB solver is set to SINGLE, the dtr is already expressed in [s]
// add also the clock offset from gps to galileo (pvt_sol.dtr[2])
rx_position_and_time[3] = pvt_sol.dtr[0] + pvt_sol.dtr[2];
}
else
{
// the receiver clock offset is expressed in [meters], so we convert it into [s]
// add also the clock offset from gps to galileo (pvt_sol.dtr[2])
rx_position_and_time[3] = pvt_sol.dtr[2] + pvt_sol.dtr[0] / SPEED_OF_LIGHT_M_S;
}
this->set_rx_pos({rx_position_and_time[0], rx_position_and_time[1], rx_position_and_time[2]}); // save ECEF position for the next iteration
// compute Ground speed and COG
double ground_speed_ms = 0.0;
std::array pos{};
std::array enuv{};
ecef2pos(pvt_sol.rr, pos.data());
ecef2enu(pos.data(), &pvt_sol.rr[3], enuv.data());
this->set_speed_over_ground(norm_rtk(enuv.data(), 2));
double new_cog;
if (ground_speed_ms >= 1.0)
{
new_cog = atan2(enuv[0], enuv[1]) * R2D;
if (new_cog < 0.0)
{
new_cog += 360.0;
}
this->set_course_over_ground(new_cog);
}
this->set_time_offset_s(rx_position_and_time[3]);
DLOG(INFO) << "RTKLIB Position at RX TOW = " << gnss_observables_map.cbegin()->second.RX_time
<< " in ECEF (X,Y,Z,t[meters]) = " << rx_position_and_time[0] << ", " << rx_position_and_time[1] << ", " << rx_position_and_time[2] << ", " << rx_position_and_time[3];
// gtime_t rtklib_utc_time = gpst2utc(pvt_sol.time); // Corrected RX Time (Non integer multiply of 1 ms of granularity)
// Uncorrected RX Time (integer multiply of 1 ms and the same observables time reported in RTCM and RINEX)
const gtime_t rtklib_time = timeadd(pvt_sol.time, rx_position_and_time[3]); // uncorrected rx time
const gtime_t rtklib_utc_time = gpst2utc(rtklib_time);
boost::posix_time::ptime p_time = boost::posix_time::from_time_t(rtklib_utc_time.time);
p_time += boost::posix_time::microseconds(static_cast(round(rtklib_utc_time.sec * 1e6))); // NOLINT(google-runtime-int)
this->set_position_UTC_time(p_time);
DLOG(INFO) << "RTKLIB Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << this->get_latitude() << " [deg], Long = " << this->get_longitude()
<< " [deg], Height= " << this->get_height() << " [m]"
<< " RX time offset= " << this->get_time_offset_s() << " [s]";
// ######## PVT MONITOR #########
// TOW
d_monitor_pvt.TOW_at_current_symbol_ms = gnss_observables_map.cbegin()->second.TOW_at_current_symbol_ms;
// WEEK
d_monitor_pvt.week = adjgpsweek(nav_data.eph[0].week, this->is_pre_2009());
// PVT GPS time
d_monitor_pvt.RX_time = gnss_observables_map.cbegin()->second.RX_time;
// User clock offset [s]
d_monitor_pvt.user_clk_offset = rx_position_and_time[3];
// ECEF POS X,Y,X [m] + ECEF VEL X,Y,X [m/s] (6 x double)
d_monitor_pvt.pos_x = pvt_sol.rr[0];
d_monitor_pvt.pos_y = pvt_sol.rr[1];
d_monitor_pvt.pos_z = pvt_sol.rr[2];
d_monitor_pvt.vel_x = pvt_sol.rr[3];
d_monitor_pvt.vel_y = pvt_sol.rr[4];
d_monitor_pvt.vel_z = pvt_sol.rr[5];
// position variance/covariance (m^2) {c_xx,c_yy,c_zz,c_xy,c_yz,c_zx} (6 x double)
d_monitor_pvt.cov_xx = pvt_sol.qr[0];
d_monitor_pvt.cov_yy = pvt_sol.qr[1];
d_monitor_pvt.cov_zz = pvt_sol.qr[2];
d_monitor_pvt.cov_xy = pvt_sol.qr[3];
d_monitor_pvt.cov_yz = pvt_sol.qr[4];
d_monitor_pvt.cov_zx = pvt_sol.qr[5];
// GEO user position Latitude [deg]
d_monitor_pvt.latitude = this->get_latitude();
// GEO user position Longitude [deg]
d_monitor_pvt.longitude = this->get_longitude();
// GEO user position Height [m]
d_monitor_pvt.height = this->get_height();
// NUMBER OF VALID SATS
d_monitor_pvt.valid_sats = pvt_sol.ns;
// RTKLIB solution status
d_monitor_pvt.solution_status = pvt_sol.stat;
// RTKLIB solution type (0:xyz-ecef,1:enu-baseline)
d_monitor_pvt.solution_type = pvt_sol.type;
// AR ratio factor for validation
d_monitor_pvt.AR_ratio_factor = pvt_sol.ratio;
// AR ratio threshold for validation
d_monitor_pvt.AR_ratio_threshold = pvt_sol.thres;
// GDOP / PDOP/ HDOP/ VDOP
d_monitor_pvt.gdop = d_dop[0];
d_monitor_pvt.pdop = d_dop[1];
d_monitor_pvt.hdop = d_dop[2];
d_monitor_pvt.vdop = d_dop[3];
this->set_rx_vel({enuv[0], enuv[1], enuv[2]});
const double clock_drift_ppm = pvt_sol.dtr[5] / SPEED_OF_LIGHT_M_S * 1e6;
this->set_clock_drift_ppm(clock_drift_ppm);
// User clock drift [ppm]
d_monitor_pvt.user_clk_drift_ppm = clock_drift_ppm;
// ######## LOG FILE #########
if (d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
uint32_t tmp_uint32;
// TOW
tmp_uint32 = gnss_observables_map.cbegin()->second.TOW_at_current_symbol_ms;
d_dump_file.write(reinterpret_cast(&tmp_uint32), sizeof(uint32_t));
// WEEK
tmp_uint32 = adjgpsweek(nav_data.eph[0].week, this->is_pre_2009());
d_dump_file.write(reinterpret_cast(&tmp_uint32), sizeof(uint32_t));
// PVT GPS time
tmp_double = gnss_observables_map.cbegin()->second.RX_time;
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// User clock offset [s]
tmp_double = rx_position_and_time[3];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// ECEF POS X,Y,X [m] + ECEF VEL X,Y,X [m/s] (6 x double)
tmp_double = pvt_sol.rr[0];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.rr[1];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.rr[2];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.rr[3];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.rr[4];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.rr[5];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// position variance/covariance (m^2) {c_xx,c_yy,c_zz,c_xy,c_yz,c_zx} (6 x double)
tmp_double = pvt_sol.qr[0];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.qr[1];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.qr[2];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.qr[3];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.qr[4];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
tmp_double = pvt_sol.qr[5];
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// GEO user position Latitude [deg]
tmp_double = this->get_latitude();
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// GEO user position Longitude [deg]
tmp_double = this->get_longitude();
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// GEO user position Height [m]
tmp_double = this->get_height();
d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double));
// NUMBER OF VALID SATS
d_dump_file.write(reinterpret_cast(&pvt_sol.ns), sizeof(uint8_t));
// RTKLIB solution status
d_dump_file.write(reinterpret_cast(&pvt_sol.stat), sizeof(uint8_t));
// RTKLIB solution type (0:xyz-ecef,1:enu-baseline)
d_dump_file.write(reinterpret_cast(&pvt_sol.type), sizeof(uint8_t));
// AR ratio factor for validation
d_dump_file.write(reinterpret_cast(&pvt_sol.ratio), sizeof(float));
// AR ratio threshold for validation
d_dump_file.write(reinterpret_cast(&pvt_sol.thres), sizeof(float));
// GDOP / PDOP / HDOP / VDOP
d_dump_file.write(reinterpret_cast(&d_dop[0]), sizeof(double));
d_dump_file.write(reinterpret_cast(&d_dop[1]), sizeof(double));
d_dump_file.write(reinterpret_cast(&d_dop[2]), sizeof(double));
d_dump_file.write(reinterpret_cast(&d_dop[3]), sizeof(double));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing RTKLIB dump file " << e.what();
}
}
}
}
return this->is_valid_position();
}