/*! * \file cubature_filter.cc * \brief Interface of a library for nonlinear tracking algorithms * * Cubature_Filter implements the functionality of the Cubature Kalman * Filter, which uses multidimensional cubature rules to estimate the * time evolution of a nonlinear system. UnscentedFilter implements * an Unscented Kalman Filter which uses Unscented Transform rules to * perform a similar estimation. * * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE * Transactions on Automatic Control, 54(6):1254–1269,2009. * * \authors * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "nonlinear_tracking.h" /***************** CUBATURE KALMAN FILTER *****************/ CubatureFilter::CubatureFilter() : x_pred_out(arma::zeros(1, 1)), P_x_pred_out(arma::eye(1, 1) * (1 + 1)), x_est(x_pred_out), P_x_est(P_x_pred_out) { } CubatureFilter::CubatureFilter(int nx) : x_pred_out(arma::zeros(nx, 1)), P_x_pred_out(arma::eye(nx, nx) * (nx + 1)), x_est(x_pred_out), P_x_est(P_x_pred_out) { } CubatureFilter::CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0) : x_pred_out(x_pred_0), P_x_pred_out(P_x_pred_0), x_est(x_pred_out), P_x_est(P_x_pred_out) { } void CubatureFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0) { x_pred_out = x_pred_0; P_x_pred_out = P_x_pred_0; x_est = x_pred_out; P_x_est = P_x_pred_out; } /* * Perform the prediction step of the cubature Kalman filter */ void CubatureFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance) { // Compute number of cubature points int nx = x_post.n_elem; int np = 2 * nx; // Generator Matrix arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx)); // Initialize predicted mean and covariance arma::vec x_pred = arma::zeros(nx, 1); arma::mat P_x_pred = arma::zeros(nx, nx); // Factorize posterior covariance arma::mat Sm_post = arma::chol(P_x_post, "lower"); // Propagate and evaluate cubature points arma::vec Xi_post; arma::vec Xi_pred; for (int i = 0; i < np; i++) { Xi_post = Sm_post * (std::sqrt(static_cast(np) / 2.0) * gen_one.col(i)) + x_post; Xi_pred = (*transition_fcn)(Xi_post); x_pred = x_pred + Xi_pred; P_x_pred = P_x_pred + Xi_pred * Xi_pred.t(); } // Compute predicted mean and error covariance x_pred = x_pred / static_cast(np); P_x_pred = P_x_pred / static_cast(np) - x_pred * x_pred.t() + noise_covariance; // Store predicted mean and error covariance x_pred_out = x_pred; P_x_pred_out = P_x_pred; } /* * Perform the update step of the cubature Kalman filter */ void CubatureFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance) { // Compute number of cubature points int nx = x_pred.n_elem; int nz = z_upd.n_elem; int np = 2 * nx; // Generator Matrix arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx)); // Initialize estimated predicted measurement and covariances arma::mat z_pred = arma::zeros(nz, 1); arma::mat P_zz_pred = arma::zeros(nz, nz); arma::mat P_xz_pred = arma::zeros(nx, nz); // Factorize predicted covariance arma::mat Sm_pred = arma::chol(P_x_pred, "lower"); // Propagate and evaluate cubature points arma::vec Xi_pred; arma::vec Zi_pred; for (int i = 0; i < np; i++) { Xi_pred = Sm_pred * (std::sqrt(static_cast(np) / 2.0) * gen_one.col(i)) + x_pred; Zi_pred = (*measurement_fcn)(Xi_pred); z_pred = z_pred + Zi_pred; P_zz_pred = P_zz_pred + Zi_pred * Zi_pred.t(); P_xz_pred = P_xz_pred + Xi_pred * Zi_pred.t(); } // Compute measurement mean, covariance and cross covariance z_pred = z_pred / static_cast(np); P_zz_pred = P_zz_pred / static_cast(np) - z_pred * z_pred.t() + noise_covariance; P_xz_pred = P_xz_pred / static_cast(np) - x_pred * z_pred.t(); // Compute cubature Kalman gain arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred); // Compute and store the updated mean and error covariance x_est = x_pred + W_k * (z_upd - z_pred); P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t(); } arma::mat CubatureFilter::get_x_pred() const { return x_pred_out; } arma::mat CubatureFilter::get_P_x_pred() const { return P_x_pred_out; } arma::mat CubatureFilter::get_x_est() const { return x_est; } arma::mat CubatureFilter::get_P_x_est() const { return P_x_est; } /***************** END CUBATURE KALMAN FILTER *****************/ /***************** UNSCENTED KALMAN FILTER *****************/ UnscentedFilter::UnscentedFilter() : x_pred_out(arma::zeros(1, 1)), P_x_pred_out(arma::eye(1, 1) * (1 + 1)), x_est(x_pred_out), P_x_est(P_x_pred_out) { } UnscentedFilter::UnscentedFilter(int nx) : x_pred_out(arma::zeros(nx, 1)), P_x_pred_out(arma::eye(nx, nx) * (nx + 1)), x_est(x_pred_out), P_x_est(P_x_pred_out) { } UnscentedFilter::UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0) : x_pred_out(x_pred_0), P_x_pred_out(P_x_pred_0), x_est(x_pred_out), P_x_est(P_x_pred_out) { } void UnscentedFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0) { x_pred_out = x_pred_0; P_x_pred_out = P_x_pred_0; x_est = x_pred_out; P_x_est = P_x_pred_out; } /* * Perform the prediction step of the Unscented Kalman filter */ void UnscentedFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance) { // Compute number of sigma points int nx = x_post.n_elem; int np = 2 * nx + 1; float alpha = 0.001; float kappa = 0.0; float beta = 2.0; float lambda = std::pow(alpha, 2.0F) * (static_cast(nx) + kappa) - static_cast(nx); // Compute UT Weights float W0_m = lambda / (static_cast(nx) + lambda); float W0_c = lambda / (static_cast(nx) + lambda) + (1 - std::pow(alpha, 2.0F) + beta); float Wi_m = 1.0F / (2.0F * (static_cast(nx) + lambda)); // Propagate and evaluate sigma points arma::mat Xi_fact = arma::zeros(nx, nx); arma::mat Xi_post = arma::zeros(nx, np); arma::mat Xi_pred = arma::zeros(nx, np); Xi_post.col(0) = x_post; Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0)); for (int i = 1; i <= nx; i++) { Xi_fact = std::sqrt(static_cast(nx) + lambda) * arma::sqrtmat_sympd(P_x_post); Xi_post.col(i) = x_post + Xi_fact.col(i - 1); Xi_post.col(i + nx) = x_post - Xi_fact.col(i - 1); Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i)); Xi_pred.col(i + nx) = (*transition_fcn)(Xi_post.col(i + nx)); } // Compute predicted mean arma::vec x_pred = W0_m * Xi_pred.col(0) + Wi_m * arma::sum(Xi_pred.cols(1, np - 1), 1); // Compute predicted error covariance arma::mat P_x_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Xi_pred.col(0).t() - x_pred.t())); for (int i = 1; i < np; i++) { P_x_pred = P_x_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Xi_pred.col(i).t() - x_pred.t())); } P_x_pred = P_x_pred + noise_covariance; // Store predicted mean and error covariance x_pred_out = x_pred; P_x_pred_out = P_x_pred; } /* * Perform the update step of the Unscented Kalman filter */ void UnscentedFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance) { // Compute number of sigma points int nx = x_pred.n_elem; int nz = z_upd.n_elem; int np = 2 * nx + 1; float alpha = 0.001; float kappa = 0.0; float beta = 2.0; float lambda = std::pow(alpha, 2.0F) * (static_cast(nx) + kappa) - static_cast(nx); // Compute UT Weights float W0_m = lambda / (static_cast(nx) + lambda); float W0_c = lambda / (static_cast(nx) + lambda) + (1.0F - std::pow(alpha, 2.0F) + beta); float Wi_m = 1.0F / (2.0F * (static_cast(nx) + lambda)); // Propagate and evaluate sigma points arma::mat Xi_fact = arma::zeros(nx, nx); arma::mat Xi_pred = arma::zeros(nx, np); arma::mat Zi_pred = arma::zeros(nz, np); Xi_pred.col(0) = x_pred; Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0)); for (int i = 1; i <= nx; i++) { Xi_fact = std::sqrt(static_cast(nx) + lambda) * arma::sqrtmat_sympd(P_x_pred); Xi_pred.col(i) = x_pred + Xi_fact.col(i - 1); Xi_pred.col(i + nx) = x_pred - Xi_fact.col(i - 1); Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i)); Zi_pred.col(i + nx) = (*measurement_fcn)(Xi_pred.col(i + nx)); } // Compute measurement mean arma::mat z_pred = W0_m * Zi_pred.col(0) + Wi_m * arma::sum(Zi_pred.cols(1, np - 1), 1); // Compute measurement covariance and cross covariance arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t())); arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t())); for (int i = 0; i < np; i++) { P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t())); P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t())); } P_zz_pred = P_zz_pred + noise_covariance; // Estimate cubature Kalman gain arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred); // Estimate and store the updated mean and error covariance x_est = x_pred + W_k * (z_upd - z_pred); P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t(); } arma::mat UnscentedFilter::get_x_pred() const { return x_pred_out; } arma::mat UnscentedFilter::get_P_x_pred() const { return P_x_pred_out; } arma::mat UnscentedFilter::get_x_est() const { return x_est; } arma::mat UnscentedFilter::get_P_x_est() const { return P_x_est; } /***************** END UNSCENTED KALMAN FILTER *****************/