/*! * \file tracking_discriminators.cc * \brief Implementation of a library with a set of code tracking * and carrier tracking discriminators that is used by the tracking algorithms. * \authors * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "tracking_discriminators.h" #include "MATH_CONSTANTS.h" // All the outputs are in RADIANS double phase_unwrap(double phase_rad) { if (phase_rad >= HALF_PI) { return phase_rad - GNSS_PI; } if (phase_rad <= -HALF_PI) { return phase_rad + GNSS_PI; } else { return phase_rad; } } /* * FLL four quadrant arctan discriminator: * \f{equation} * \frac{\phi_2-\phi_1}{t_2-t1}=\frac{ATAN2(cross,dot)}{t_1-t_2}, * \f} * where \f$cross=I_{PS1}Q_{PS2}-I_{PS2}Q_{PS1}\f$ and \f$dot=I_{PS1}I_{PS2}+Q_{PS1}Q_{PS2}\f$, * \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and * \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second]. */ double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2) { const float dot = prompt_s1.real() * prompt_s2.real() + prompt_s1.imag() * prompt_s2.imag(); const float cross = prompt_s1.real() * prompt_s2.imag() - prompt_s2.real() * prompt_s1.imag(); return std::atan2(cross, dot) / (t2 - t1); } /* * FLL differential arctan discriminator: * \f{equation} * e_{atan}(k)=\frac{1}{t_1-t_2}\text{phase_unwrap}(\tan^-1(\frac{Q(k)}{I(k)})-\tan^-1(\frac{Q(k-1)}{I(k-1)})) * \f} * The output is in [radians/second]. */ double fll_diff_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2) { double diff_atan = std::atan(prompt_s2.imag() / prompt_s2.real()) - std::atan(prompt_s1.imag() / prompt_s1.real()); if (std::isnan(diff_atan)) { diff_atan = 0; } return phase_unwrap(diff_atan) / (t2 - t1); } /* * PLL four quadrant arctan discriminator: * \f{equation} * \phi=ATAN2(Q_{PS},I_{PS}), * \f} * where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians]. */ double pll_four_quadrant_atan(gr_complex prompt_s1) { return static_cast(std::atan2(prompt_s1.imag(), prompt_s1.real())); } /* * PLL Costas loop two quadrant arctan discriminator: * \f{equation} * \phi=ATAN\left(\frac{Q_{PS}}{I_{PS}}\right), * \f} * where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians]. */ double pll_cloop_two_quadrant_atan(gr_complex prompt_s1) { if (prompt_s1.real() != 0.0) { return static_cast(std::atan(prompt_s1.imag() / prompt_s1.real())); } return 0.0; } /* * DLL Noncoherent Early minus Late envelope normalized discriminator: * \f{equation} * error = \frac{y_{intercept} - \text{slope} * \epsilon}{\text{slope}} \frac{E-L}{E+L}, * \f} * where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and * \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips]. */ double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1, float spc, float slope, float y_intercept) { const double P_early = std::abs(early_s1); const double P_late = std::abs(late_s1); const double E_plus_L = P_early + P_late; if (E_plus_L == 0.0) { return 0.0; } return ((y_intercept - slope * spc) / slope) * (P_early - P_late) / E_plus_L; } /* * DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator, using the outputs * of four correlators, Very Early (VE), Early (E), Late (L) and Very Late (VL): * \f{equation} * error=\frac{E-L}{E+L}, * \f} * where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and * \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips]. */ double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1) { const double Early = std::sqrt(very_early_s1.real() * very_early_s1.real() + very_early_s1.imag() * very_early_s1.imag() + early_s1.real() * early_s1.real() + early_s1.imag() * early_s1.imag()); const double Late = std::sqrt(late_s1.real() * late_s1.real() + late_s1.imag() * late_s1.imag() + very_late_s1.real() * very_late_s1.real() + very_late_s1.imag() * very_late_s1.imag()); const double E_plus_L = Early + Late; if (E_plus_L == 0.0) { return 0.0; } return (Early - Late) / E_plus_L; }