/*! * \file control_thread.cc * \brief This class implements the receiver control plane * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com * * GNSS Receiver Control Plane: connects the flowgraph, starts running it, * and while it does not stop, reads the control messages generated by the blocks, * process them, and apply the corresponding actions. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ------------------------------------------------------------------------- */ #if ARMA_NO_BOUND_CHECKING #define ARMA_NO_DEBUG 1 #endif #include "control_thread.h" #include "concurrent_map.h" #include "configuration_interface.h" #include "file_configuration.h" #include "galileo_almanac.h" #include "galileo_ephemeris.h" #include "galileo_iono.h" #include "galileo_utc_model.h" #include "geofunctions.h" #include "glonass_gnav_ephemeris.h" #include "glonass_gnav_utc_model.h" #include "gnss_flowgraph.h" #include "gnss_satellite.h" #include "gnss_sdr_flags.h" #include "gps_acq_assist.h" // for Gps_Acq_Assist #include "gps_almanac.h" // for Gps_Almanac #include "gps_cnav_ephemeris.h" // for Gps_CNAV_Ephemeris #include "gps_cnav_utc_model.h" // for Gps_CNAV_Utc_Model #include "gps_ephemeris.h" // for Gps_Ephemeris #include "gps_iono.h" // for Gps_Iono #include "gps_utc_model.h" // for Gps_Utc_Model #include "pvt_interface.h" // for PvtInterface #include "rtklib.h" // for gtime_t, alm_t #include "rtklib_conversions.h" // for alm_to_rtklib #include "rtklib_ephemeris.h" // for alm2pos, eph2pos #include "rtklib_rtkcmn.h" // for utc2gpst #include // for interaction with geofunctions #include // for bad_lexical_cast #include // for LOG #include // for make_any #include // for find, min #include // for milliseconds #include // for floor, fmod, log #include // for time_t, gmtime, strftime #include // for exception #include // for operator<< #include // for numeric_limits #include // for map #include // for pthread_cancel #include // for invalid_argument #include // for IPC_CREAT #include // for msgctl, msgget #ifdef ENABLE_FPGA #include // for steady_clock #endif extern Concurrent_Map global_gps_acq_assist_map; extern Concurrent_Queue global_gps_acq_assist_queue; ControlThread::ControlThread() { if (FLAGS_c == "-") { configuration_ = std::make_shared(FLAGS_config_file); } else { configuration_ = std::make_shared(FLAGS_c); } restart_ = false; init(); } ControlThread::ControlThread(std::shared_ptr configuration) { configuration_ = std::move(configuration); restart_ = false; init(); } void ControlThread::init() { telecommand_enabled_ = configuration_->property("GNSS-SDR.telecommand_enabled", false); // OPTIONAL: specify a custom year to override the system time in order to postprocess old gnss records and avoid wrong week rollover pre_2009_file_ = configuration_->property("GNSS-SDR.pre_2009_file", false); // Instantiates a control queue, a GNSS flowgraph, and a control message factory control_queue_ = std::make_shared>(); cmd_interface_.set_msg_queue(control_queue_); // set also the queue pointer for the telecommand thread try { flowgraph_ = std::make_shared(configuration_, control_queue_); } catch (const boost::bad_lexical_cast &e) { std::cout << "Caught bad lexical cast with error " << e.what() << '\n'; } stop_ = false; processed_control_messages_ = 0; applied_actions_ = 0; supl_mcc_ = 0; supl_mns_ = 0; supl_lac_ = 0; supl_ci_ = 0; msqid_ = -1; agnss_ref_location_ = Agnss_Ref_Location(); agnss_ref_time_ = Agnss_Ref_Time(); const std::string empty_string; const std::string ref_location_str = configuration_->property("GNSS-SDR.AGNSS_ref_location", empty_string); const std::string ref_time_str = configuration_->property("GNSS-SDR.AGNSS_ref_utc_time", empty_string); if (ref_location_str != empty_string) { std::vector vect; std::stringstream ss(ref_location_str); double d; while (ss >> d) { vect.push_back(d); if ((ss.peek() == ',') or (ss.peek() == ' ')) { ss.ignore(); } } // fill agnss_ref_location_ if (vect.size() >= 2) { if ((vect[0] < 90.0) and (vect[0] > -90) and (vect[1] < 180.0) and (vect[1] > -180.0)) { agnss_ref_location_.lat = vect[0]; agnss_ref_location_.lon = vect[1]; agnss_ref_location_.valid = true; } else { std::cerr << "GNSS-SDR.AGNSS_ref_location=" << ref_location_str << " is not a valid position.\n"; agnss_ref_location_.valid = false; } } } if (ref_time_str == empty_string) { // Make an educated guess time_t rawtime; time(&rawtime); agnss_ref_time_.d_tv_sec = rawtime; agnss_ref_time_.valid = true; } else { // fill agnss_ref_time_ struct tm tm { }; if (strptime(ref_time_str.c_str(), "%d/%m/%Y %H:%M:%S", &tm) != nullptr) { agnss_ref_time_.d_tv_sec = timegm(&tm); if (agnss_ref_time_.d_tv_sec > 0) { agnss_ref_time_.valid = true; } else { std::cerr << "GNSS-SDR.AGNSS_ref_utc_time=" << ref_time_str << " is not well-formed. Please use four digits for the year: DD/MM/YYYY HH:MM:SS\n"; } } else { std::cerr << "GNSS-SDR.AGNSS_ref_utc_time=" << ref_time_str << " is not well-formed. Should be DD/MM/YYYY HH:MM:SS in UTC\n"; agnss_ref_time_.valid = false; } } receiver_on_standby_ = false; } ControlThread::~ControlThread() // NOLINT(modernize-use-equals-default) { DLOG(INFO) << "Control Thread destructor called"; if (msqid_ != -1) { msgctl(msqid_, IPC_RMID, nullptr); } if (sysv_queue_thread_.joinable()) { sysv_queue_thread_.join(); } if (cmd_interface_thread_.joinable()) { cmd_interface_thread_.join(); } } void ControlThread::telecommand_listener() { if (telecommand_enabled_) { const int tcp_cmd_port = configuration_->property("GNSS-SDR.telecommand_tcp_port", 3333); cmd_interface_.run_cmd_server(tcp_cmd_port); } } void ControlThread::event_dispatcher(bool &valid_event, pmt::pmt_t &msg) { if (valid_event) { processed_control_messages_++; const size_t msg_type_hash_code = pmt::any_ref(msg).type().hash_code(); if (msg_type_hash_code == channel_event_type_hash_code_) { if (receiver_on_standby_ == false) { const channel_event_sptr new_event = boost::any_cast(pmt::any_ref(msg)); DLOG(INFO) << "New channel event rx from ch id: " << new_event->channel_id << " what: " << new_event->event_type; flowgraph_->apply_action(new_event->channel_id, new_event->event_type); } } else if (msg_type_hash_code == command_event_type_hash_code_) { const command_event_sptr new_event = boost::any_cast(pmt::any_ref(msg)); DLOG(INFO) << "New command event rx from ch id: " << new_event->command_id << " what: " << new_event->event_type; if (new_event->command_id == 200) { apply_action(new_event->event_type); } else { if (new_event->command_id == 300) // some TC commands require also actions from control_thread { apply_action(new_event->event_type); } flowgraph_->apply_action(new_event->command_id, new_event->event_type); } } else { DLOG(INFO) << "Control Queue: unknown object type!\n"; } } else { if (receiver_on_standby_ == false) { // perform non-priority tasks flowgraph_->acquisition_manager(0); // start acquisition of untracked satellites } } } /* * Runs the control thread that manages the receiver control plane * * This is the main loop that reads and process the control messages * 1- Connect the GNSS receiver flowgraph * 2- Start the GNSS receiver flowgraph * while (flowgraph_->running() && !stop)_{ * 3- Read control messages and process them } */ int ControlThread::run() { // Connect the flowgraph try { flowgraph_->connect(); } catch (const std::exception &e) { LOG(ERROR) << e.what(); return 0; } if (flowgraph_->connected()) { LOG(INFO) << "Flowgraph connected"; } else { LOG(ERROR) << "Unable to connect flowgraph"; return 0; } // Start the flowgraph flowgraph_->start(); if (flowgraph_->running()) { LOG(INFO) << "Flowgraph started"; } else { LOG(ERROR) << "Unable to start flowgraph"; return 0; } // launch GNSS assistance process AFTER the flowgraph is running because the GNU Radio asynchronous queues must be already running to transport msgs assist_GNSS(); // start the keyboard_listener thread keyboard_thread_ = std::thread(&ControlThread::keyboard_listener, this); sysv_queue_thread_ = std::thread(&ControlThread::sysv_queue_listener, this); // start the telecommand listener thread cmd_interface_.set_pvt(flowgraph_->get_pvt()); cmd_interface_thread_ = std::thread(&ControlThread::telecommand_listener, this); #ifdef ENABLE_FPGA // Create a task for the acquisition such that id doesn't block the flow of the control thread fpga_helper_thread_ = boost::thread(&GNSSFlowgraph::start_acquisition_helper, flowgraph_); #endif // Main loop to read and process the control messages pmt::pmt_t msg; while (flowgraph_->running() && !stop_) { // read event messages, triggered by event signaling with a 100 ms timeout to perform low priority receiver management tasks bool valid_event = control_queue_->timed_wait_and_pop(msg, 100); // call the new sat dispatcher and receiver controller event_dispatcher(valid_event, msg); } std::cout << "Stopping GNSS-SDR, please wait!\n"; flowgraph_->stop(); stop_ = true; flowgraph_->disconnect(); #ifdef ENABLE_FPGA // trigger a HW reset // The HW reset causes any HW accelerator module that is waiting for more samples to complete its calculations // to trigger an interrupt and finish its signal processing tasks immediately. In this way all SW threads that // are waiting for interrupts in the HW can exit in a normal way. flowgraph_->perform_hw_reset(); fpga_helper_thread_.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(1000)); #endif // Terminate keyboard thread pthread_t id = keyboard_thread_.native_handle(); keyboard_thread_.detach(); pthread_cancel(id); if (telecommand_enabled_) { pthread_t id2 = cmd_interface_thread_.native_handle(); cmd_interface_thread_.detach(); pthread_cancel(id2); } LOG(INFO) << "Flowgraph stopped"; if (restart_) { return 42; // signal the gnss-sdr-harness.sh to restart the receiver program } return 0; // normal shutdown } void ControlThread::set_control_queue(std::shared_ptr> control_queue) { if (flowgraph_->running()) { LOG(WARNING) << "Unable to set control queue while flowgraph is running"; return; } control_queue_ = std::move(control_queue); cmd_interface_.set_msg_queue(control_queue_); } /* * Returns true if reading was successful */ bool ControlThread::read_assistance_from_XML() { // return variable (true == succeeded) bool ret = false; // getting names from the config file, if available std::string eph_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_ephemeris_xml", eph_default_xml_filename_); std::string utc_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_utc_model_xml", utc_default_xml_filename_); std::string iono_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_iono_xml", iono_default_xml_filename_); std::string gal_iono_xml_filename = configuration_->property("GNSS-SDR.SUPL_gal_iono_xml", gal_iono_default_xml_filename_); std::string ref_time_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_ref_time_xml", ref_time_default_xml_filename_); std::string ref_location_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_ref_location_xml", ref_location_default_xml_filename_); std::string eph_gal_xml_filename = configuration_->property("GNSS-SDR.SUPL_gal_ephemeris_xml", eph_gal_default_xml_filename_); std::string eph_cnav_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_cnav_ephemeris_xml", eph_cnav_default_xml_filename_); std::string gal_utc_xml_filename = configuration_->property("GNSS-SDR.SUPL_gal_utc_model_xml", gal_utc_default_xml_filename_); std::string cnav_utc_xml_filename = configuration_->property("GNSS-SDR.SUPL_cnav_utc_model_xml", cnav_utc_default_xml_filename_); std::string eph_glo_xml_filename = configuration_->property("GNSS-SDR.SUPL_glo_ephemeris_xml", eph_glo_gnav_default_xml_filename_); std::string glo_utc_xml_filename = configuration_->property("GNSS-SDR.SUPL_glo_utc_model_xml", glo_utc_default_xml_filename_); std::string gal_almanac_xml_filename = configuration_->property("GNSS-SDR.SUPL_gal_almanac_xml", gal_almanac_default_xml_filename_); std::string gps_almanac_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_almanac_xml", gps_almanac_default_xml_filename_); if (configuration_->property("GNSS-SDR.AGNSS_XML_enabled", false) == true) { eph_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_ephemeris_xml", eph_default_xml_filename_); utc_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_utc_model_xml", utc_default_xml_filename_); iono_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_iono_xml", iono_default_xml_filename_); gal_iono_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gal_iono_xml", gal_iono_default_xml_filename_); ref_time_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_ref_time_xml", ref_time_default_xml_filename_); ref_location_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_ref_location_xml", ref_location_default_xml_filename_); eph_gal_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gal_ephemeris_xml", eph_gal_default_xml_filename_); eph_cnav_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_cnav_ephemeris_xml", eph_cnav_default_xml_filename_); gal_utc_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gal_utc_model_xml", gal_utc_default_xml_filename_); cnav_utc_xml_filename = configuration_->property("GNSS-SDR.AGNSS_cnav_utc_model_xml", cnav_utc_default_xml_filename_); eph_glo_xml_filename = configuration_->property("GNSS-SDR.AGNSS_glo_ephemeris_xml", eph_glo_gnav_default_xml_filename_); glo_utc_xml_filename = configuration_->property("GNSS-SDR.AGNSS_glo_utc_model_xml", glo_utc_default_xml_filename_); gal_almanac_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gal_almanac_xml", gal_almanac_default_xml_filename_); gps_almanac_xml_filename = configuration_->property("GNSS-SDR.AGNSS_gps_almanac_xml", gps_almanac_default_xml_filename_); } std::cout << "Trying to read GNSS ephemeris from XML file(s)...\n"; if (configuration_->property("Channels_1C.count", 0) > 0) { if (supl_client_ephemeris_.load_ephemeris_xml(eph_xml_filename) == true) { std::map::const_iterator gps_eph_iter; for (gps_eph_iter = supl_client_ephemeris_.gps_ephemeris_map.cbegin(); gps_eph_iter != supl_client_ephemeris_.gps_ephemeris_map.cend(); gps_eph_iter++) { std::cout << "From XML file: Read NAV ephemeris for satellite " << Gnss_Satellite("GPS", gps_eph_iter->second.i_satellite_PRN) << '\n'; const std::shared_ptr tmp_obj = std::make_shared(gps_eph_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } ret = true; } if (supl_client_acquisition_.load_utc_xml(utc_xml_filename) == true) { const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gps_utc); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); std::cout << "From XML file: Read GPS UTC model parameters.\n"; ret = true; } if (supl_client_acquisition_.load_iono_xml(iono_xml_filename) == true) { const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gps_iono); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); std::cout << "From XML file: Read GPS ionosphere model parameters.\n"; ret = true; } if (supl_client_ephemeris_.load_gps_almanac_xml(gps_almanac_xml_filename) == true) { std::map::const_iterator gps_alm_iter; for (gps_alm_iter = supl_client_ephemeris_.gps_almanac_map.cbegin(); gps_alm_iter != supl_client_ephemeris_.gps_almanac_map.cend(); gps_alm_iter++) { std::cout << "From XML file: Read GPS almanac for satellite " << Gnss_Satellite("GPS", gps_alm_iter->second.i_satellite_PRN) << '\n'; const std::shared_ptr tmp_obj = std::make_shared(gps_alm_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } ret = true; } } if ((configuration_->property("Channels_1B.count", 0) > 0) or (configuration_->property("Channels_5X.count", 0) > 0)) { if (supl_client_ephemeris_.load_gal_ephemeris_xml(eph_gal_xml_filename) == true) { std::map::const_iterator gal_eph_iter; for (gal_eph_iter = supl_client_ephemeris_.gal_ephemeris_map.cbegin(); gal_eph_iter != supl_client_ephemeris_.gal_ephemeris_map.cend(); gal_eph_iter++) { std::cout << "From XML file: Read ephemeris for satellite " << Gnss_Satellite("Galileo", gal_eph_iter->second.i_satellite_PRN) << '\n'; const std::shared_ptr tmp_obj = std::make_shared(gal_eph_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } ret = true; } if (supl_client_acquisition_.load_gal_iono_xml(gal_iono_xml_filename) == true) { const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gal_iono); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); std::cout << "From XML file: Read Galileo ionosphere model parameters.\n"; ret = true; } if (supl_client_acquisition_.load_gal_utc_xml(gal_utc_xml_filename) == true) { const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gal_utc); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); std::cout << "From XML file: Read Galileo UTC model parameters.\n"; ret = true; } if (supl_client_ephemeris_.load_gal_almanac_xml(gal_almanac_xml_filename) == true) { std::map::const_iterator gal_alm_iter; for (gal_alm_iter = supl_client_ephemeris_.gal_almanac_map.cbegin(); gal_alm_iter != supl_client_ephemeris_.gal_almanac_map.cend(); gal_alm_iter++) { std::cout << "From XML file: Read Galileo almanac for satellite " << Gnss_Satellite("Galileo", gal_alm_iter->second.i_satellite_PRN) << '\n'; const std::shared_ptr tmp_obj = std::make_shared(gal_alm_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } ret = true; } } if ((configuration_->property("Channels_2S.count", 0) > 0) or (configuration_->property("Channels_L5.count", 0) > 0)) { if (supl_client_ephemeris_.load_cnav_ephemeris_xml(eph_cnav_xml_filename) == true) { std::map::const_iterator gps_cnav_eph_iter; for (gps_cnav_eph_iter = supl_client_ephemeris_.gps_cnav_ephemeris_map.cbegin(); gps_cnav_eph_iter != supl_client_ephemeris_.gps_cnav_ephemeris_map.cend(); gps_cnav_eph_iter++) { std::cout << "From XML file: Read CNAV ephemeris for satellite " << Gnss_Satellite("GPS", gps_cnav_eph_iter->second.i_satellite_PRN) << '\n'; const std::shared_ptr tmp_obj = std::make_shared(gps_cnav_eph_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } ret = true; } if (supl_client_acquisition_.load_cnav_utc_xml(cnav_utc_xml_filename) == true) { const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gps_cnav_utc); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); std::cout << "From XML file: Read GPS CNAV UTC model parameters.\n"; ret = true; } } if ((configuration_->property("Channels_1G.count", 0) > 0) or (configuration_->property("Channels_2G.count", 0) > 0)) { if (supl_client_ephemeris_.load_gnav_ephemeris_xml(eph_glo_xml_filename) == true) { std::map::const_iterator glo_gnav_eph_iter; for (glo_gnav_eph_iter = supl_client_ephemeris_.glonass_gnav_ephemeris_map.cbegin(); glo_gnav_eph_iter != supl_client_ephemeris_.glonass_gnav_ephemeris_map.cend(); glo_gnav_eph_iter++) { std::cout << "From XML file: Read GLONASS GNAV ephemeris for satellite " << Gnss_Satellite("GLONASS", glo_gnav_eph_iter->second.i_satellite_PRN) << '\n'; const std::shared_ptr tmp_obj = std::make_shared(glo_gnav_eph_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } ret = true; } if (supl_client_acquisition_.load_glo_utc_xml(glo_utc_xml_filename) == true) { const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.glo_gnav_utc); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); std::cout << "From XML file: Read GLONASS UTC model parameters.\n"; ret = true; } } if (ret == false) { std::cout << "Error reading XML files\n"; std::cout << "Disabling GNSS assistance...\n"; } // Only look for {ref time, ref location} if SUPL is enabled const bool enable_gps_supl_assistance = configuration_->property("GNSS-SDR.SUPL_gps_enabled", false); if (enable_gps_supl_assistance == true) { // Try to read Ref Time from XML if (supl_client_acquisition_.load_ref_time_xml(ref_time_xml_filename) == true) { LOG(INFO) << "SUPL: Read XML Ref Time"; const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gps_time); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } else { LOG(INFO) << "SUPL: could not read Ref Time XML"; } // Try to read Ref Location from XML if (supl_client_acquisition_.load_ref_location_xml(ref_location_xml_filename) == true) { LOG(INFO) << "SUPL: Read XML Ref Location"; const std::shared_ptr tmp_obj = std::make_shared(supl_client_acquisition_.gps_ref_loc); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } else { LOG(INFO) << "SUPL: could not read Ref Location XML"; } } return ret; } void ControlThread::assist_GNSS() { // ######### GNSS Assistance ################################# // GNSS Assistance configuration const bool enable_gps_supl_assistance = configuration_->property("GNSS-SDR.SUPL_gps_enabled", false); const bool enable_agnss_xml = configuration_->property("GNSS-SDR.AGNSS_XML_enabled", false); if ((enable_gps_supl_assistance == true) and (enable_agnss_xml == false)) { std::cout << "SUPL RRLP GPS assistance enabled!\n"; const std::string default_acq_server("supl.google.com"); const std::string default_eph_server("supl.google.com"); supl_client_ephemeris_.server_name = configuration_->property("GNSS-SDR.SUPL_gps_ephemeris_server", default_acq_server); supl_client_acquisition_.server_name = configuration_->property("GNSS-SDR.SUPL_gps_acquisition_server", default_eph_server); supl_client_ephemeris_.server_port = configuration_->property("GNSS-SDR.SUPL_gps_ephemeris_port", 7275); supl_client_acquisition_.server_port = configuration_->property("GNSS-SDR.SUPL_gps_acquisition_port", 7275); supl_mcc_ = configuration_->property("GNSS-SDR.SUPL_MCC", 244); supl_mns_ = configuration_->property("GNSS-SDR.SUPL_MNC ", 5); const std::string default_lac("0x59e2"); const std::string default_ci("0x31b0"); const std::string supl_lac_s = configuration_->property("GNSS-SDR.SUPL_LAC", default_lac); const std::string supl_ci_s = configuration_->property("GNSS-SDR.SUPL_CI", default_ci); try { supl_lac_ = std::stoi(supl_lac_s, nullptr, 0); } catch (const std::invalid_argument &ia) { std::cerr << "Invalid argument for SUPL LAC: " << ia.what() << '\n'; supl_lac_ = -1; } try { supl_ci_ = std::stoi(supl_ci_s, nullptr, 0); } catch (const std::invalid_argument &ia) { std::cerr << "Invalid argument for SUPL CI: " << ia.what() << '\n'; supl_ci_ = -1; } if (supl_lac_ < 0 or supl_lac_ > 65535) { supl_lac_ = 0x59e2; } if (supl_ci_ < 0 or supl_ci_ > 268435455) // 2^16 for GSM and CDMA, 2^28 for UMTS and LTE networks { supl_ci_ = 0x31b0; } const bool SUPL_read_gps_assistance_xml = configuration_->property("GNSS-SDR.SUPL_read_gps_assistance_xml", false); if (SUPL_read_gps_assistance_xml == true) { // Read assistance from file if (read_assistance_from_XML()) { std::cout << "GNSS assistance data loaded from local XML file(s).\n"; std::cout << "No SUPL request has been performed.\n"; } } else { // Request ephemeris from SUPL server supl_client_ephemeris_.request = 1; std::cout << "SUPL: Try to read GPS ephemeris data from SUPL server...\n"; int error = supl_client_ephemeris_.get_assistance(supl_mcc_, supl_mns_, supl_lac_, supl_ci_); if (error == 0) { std::map::const_iterator gps_eph_iter; for (gps_eph_iter = supl_client_ephemeris_.gps_ephemeris_map.cbegin(); gps_eph_iter != supl_client_ephemeris_.gps_ephemeris_map.cend(); gps_eph_iter++) { std::cout << "SUPL: Received ephemeris data for satellite " << Gnss_Satellite("GPS", gps_eph_iter->second.i_satellite_PRN) << '\n'; std::shared_ptr tmp_obj = std::make_shared(gps_eph_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } // Save ephemeris to XML file std::string eph_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_ephemeris_xml", eph_default_xml_filename_); if (supl_client_ephemeris_.save_ephemeris_map_xml(eph_xml_filename, supl_client_ephemeris_.gps_ephemeris_map) == true) { std::cout << "SUPL: XML ephemeris data file created\n"; } else { std::cout << "SUPL: Failed to create XML ephemeris data file\n"; } } else { std::cout << "ERROR: SUPL client request for ephemeris data returned " << error << '\n'; std::cout << "Please check your network connectivity and SUPL server configuration\n"; std::cout << "Trying to read AGNSS data from local XML file(s)...\n"; if (read_assistance_from_XML() == false) { std::cout << "ERROR: Could not read XML files: Disabling SUPL assistance.\n"; } } // Request almanac, IONO and UTC Model data supl_client_ephemeris_.request = 0; std::cout << "SUPL: Try to read Almanac, Iono, Utc Model, Ref Time and Ref Location data from SUPL server...\n"; error = supl_client_ephemeris_.get_assistance(supl_mcc_, supl_mns_, supl_lac_, supl_ci_); if (error == 0) { std::map::const_iterator gps_alm_iter; for (gps_alm_iter = supl_client_ephemeris_.gps_almanac_map.cbegin(); gps_alm_iter != supl_client_ephemeris_.gps_almanac_map.cend(); gps_alm_iter++) { std::cout << "SUPL: Received almanac data for satellite " << Gnss_Satellite("GPS", gps_alm_iter->second.i_satellite_PRN) << '\n'; std::shared_ptr tmp_obj = std::make_shared(gps_alm_iter->second); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } supl_client_ephemeris_.save_gps_almanac_xml("gps_almanac_map.xml", supl_client_ephemeris_.gps_almanac_map); if (supl_client_ephemeris_.gps_iono.valid == true) { std::cout << "SUPL: Received GPS Ionosphere model parameters\n"; std::shared_ptr tmp_obj = std::make_shared(supl_client_ephemeris_.gps_iono); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } if (supl_client_ephemeris_.gps_utc.valid == true) { std::cout << "SUPL: Received GPS UTC model parameters\n"; std::shared_ptr tmp_obj = std::make_shared(supl_client_ephemeris_.gps_utc); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); } // Save iono and UTC model data to xml file const std::string iono_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_iono_xml", iono_default_xml_filename_); if (supl_client_ephemeris_.save_iono_xml(iono_xml_filename, supl_client_ephemeris_.gps_iono) == true) { std::cout << "SUPL: Iono data file created\n"; } else { std::cout << "SUPL: Failed to create Iono data file\n"; } const std::string utc_xml_filename = configuration_->property("GNSS-SDR.SUPL_gps_utc_model_xml", utc_default_xml_filename_); if (supl_client_ephemeris_.save_utc_xml(utc_xml_filename, supl_client_ephemeris_.gps_utc) == true) { std::cout << "SUPL: UTC model data file created\n"; } else { std::cout << "SUPL: Failed to create UTC model data file\n"; } } else { std::cout << "ERROR: SUPL client for almanac data returned " << error << '\n'; std::cout << "Please check your network connectivity and SUPL server configuration\n"; } // Request acquisition assistance supl_client_acquisition_.request = 2; std::cout << "SUPL: Try to read acquisition assistance data from SUPL server...\n"; error = supl_client_acquisition_.get_assistance(supl_mcc_, supl_mns_, supl_lac_, supl_ci_); if (error == 0) { std::map::const_iterator gps_acq_iter; for (gps_acq_iter = supl_client_acquisition_.gps_acq_map.cbegin(); gps_acq_iter != supl_client_acquisition_.gps_acq_map.cend(); gps_acq_iter++) { std::cout << "SUPL: Received acquisition assistance data for satellite " << Gnss_Satellite("GPS", gps_acq_iter->second.i_satellite_PRN) << '\n'; global_gps_acq_assist_map.write(gps_acq_iter->second.i_satellite_PRN, gps_acq_iter->second); } if (supl_client_acquisition_.gps_ref_loc.valid == true) { std::cout << "SUPL: Received Ref Location data (Acquisition Assistance)\n"; agnss_ref_location_ = supl_client_acquisition_.gps_ref_loc; std::shared_ptr tmp_obj = std::make_shared(agnss_ref_location_); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); supl_client_acquisition_.save_ref_location_xml("agnss_ref_location.xml", agnss_ref_location_); } if (supl_client_acquisition_.gps_time.valid == true) { std::cout << "SUPL: Received Ref Time data (Acquisition Assistance)\n"; agnss_ref_time_ = supl_client_acquisition_.gps_time; std::shared_ptr tmp_obj = std::make_shared(agnss_ref_time_); flowgraph_->send_telemetry_msg(pmt::make_any(tmp_obj)); supl_client_acquisition_.save_ref_time_xml("agnss_ref_time.xml", agnss_ref_time_); } } else { std::cout << "ERROR: SUPL client for acquisition assistance returned " << error << '\n'; std::cout << "Please check your network connectivity and SUPL server configuration\n"; std::cout << "Disabling SUPL acquisition assistance.\n"; } } } if ((enable_gps_supl_assistance == false) and (enable_agnss_xml == true)) { // read assistance from file if (read_assistance_from_XML()) { std::cout << "GNSS assistance data loaded from local XML file(s).\n"; } } // If AGNSS is enabled, make use of it if ((agnss_ref_location_.valid == true) and ((enable_gps_supl_assistance == true) or (enable_agnss_xml == true))) { // Get the list of visible satellites std::array ref_LLH{}; ref_LLH[0] = agnss_ref_location_.lat; ref_LLH[1] = agnss_ref_location_.lon; time_t ref_rx_utc_time = 0; if (agnss_ref_time_.valid == true) { ref_rx_utc_time = static_cast(agnss_ref_time_.d_tv_sec); } std::vector> visible_sats = get_visible_sats(ref_rx_utc_time, ref_LLH); // Set the receiver in Standby mode flowgraph_->apply_action(0, 10); // Give priority to visible satellites in the search list flowgraph_->priorize_satellites(visible_sats); // Hot Start flowgraph_->apply_action(0, 12); } } void ControlThread::apply_action(unsigned int what) { std::shared_ptr pvt_ptr; std::vector> visible_satellites; applied_actions_++; switch (what) { case 0: LOG(INFO) << "Received action STOP"; stop_ = true; break; case 1: LOG(INFO) << "Received action RESTART"; stop_ = true; restart_ = true; break; case 10: // request standby mode LOG(INFO) << "TC request standby mode"; receiver_on_standby_ = true; break; case 11: LOG(INFO) << "Receiver action COLDSTART"; // delete all ephemeris and almanac information from maps (also the PVT map queue) pvt_ptr = flowgraph_->get_pvt(); pvt_ptr->clear_ephemeris(); // todo: reorder the satellite queues to the receiver default startup order. // This is required to allow repeatability. Otherwise the satellite search order will depend on the last tracked satellites // start again the satellite acquisitions receiver_on_standby_ = false; break; case 12: LOG(INFO) << "Receiver action HOTSTART"; visible_satellites = get_visible_sats(cmd_interface_.get_utc_time(), cmd_interface_.get_LLH()); // reorder the satellite queue to acquire first those visible satellites flowgraph_->priorize_satellites(visible_satellites); // start again the satellite acquisitions receiver_on_standby_ = false; break; case 13: LOG(INFO) << "Receiver action WARMSTART"; // delete all ephemeris and almanac information from maps (also the PVT map queue) pvt_ptr = flowgraph_->get_pvt(); pvt_ptr->clear_ephemeris(); // load the ephemeris and the almanac from XML files (receiver assistance) read_assistance_from_XML(); // call here the function that computes the set of visible satellites and its elevation // for the date and time specified by the warm start command and the assisted position get_visible_sats(cmd_interface_.get_utc_time(), cmd_interface_.get_LLH()); // reorder the satellite queue to acquire first those visible satellites flowgraph_->priorize_satellites(visible_satellites); // start again the satellite acquisitions receiver_on_standby_ = false; break; default: LOG(INFO) << "Unrecognized action."; break; } } std::vector> ControlThread::get_visible_sats(time_t rx_utc_time, const std::array &LLH) { // 1. Compute rx ECEF position from LLH WGS84 const arma::vec LLH_rad = arma::vec{degtorad(LLH[0]), degtorad(LLH[1]), LLH[2]}; arma::mat C_tmp = arma::zeros(3, 3); arma::vec r_eb_e = arma::zeros(3, 1); arma::vec v_eb_e = arma::zeros(3, 1); Geo_to_ECEF(LLH_rad, arma::vec{0, 0, 0}, C_tmp, r_eb_e, v_eb_e, C_tmp); // 2. Compute rx GPS time from UTC time gtime_t utc_gtime; utc_gtime.time = rx_utc_time; utc_gtime.sec = 0.0; gtime_t gps_gtime = utc2gpst(utc_gtime); // 3. loop through all the available ephemeris or almanac and compute satellite positions and elevations // store visible satellites in a vector of pairs to associate an elevation to the each satellite std::vector> available_satellites; std::vector visible_gps; std::vector visible_gal; std::shared_ptr pvt_ptr = flowgraph_->get_pvt(); struct tm tstruct { }; char buf[80]; tstruct = *gmtime(&rx_utc_time); strftime(buf, sizeof(buf), "%d/%m/%Y %H:%M:%S ", &tstruct); const std::string str_time = std::string(buf); std::cout << "Get visible satellites at " << str_time << "UTC, assuming RX position " << LLH[0] << " [deg], " << LLH[1] << " [deg], " << LLH[2] << " [m]\n"; const std::map gps_eph_map = pvt_ptr->get_gps_ephemeris(); for (auto &it : gps_eph_map) { eph_t rtklib_eph = eph_to_rtklib(it.second, pre_2009_file_); std::array r_sat{}; double clock_bias_s; double sat_pos_variance_m2; eph2pos(gps_gtime, &rtklib_eph, r_sat.data(), &clock_bias_s, &sat_pos_variance_m2); double Az; double El; double dist_m; const arma::vec r_sat_eb_e = arma::vec{r_sat[0], r_sat[1], r_sat[2]}; const arma::vec dx = r_sat_eb_e - r_eb_e; topocent(&Az, &El, &dist_m, r_eb_e, dx); // push sat if (El > 0) { std::cout << "Using GPS Ephemeris: Sat " << it.second.i_satellite_PRN << " Az: " << Az << " El: " << El << '\n'; available_satellites.emplace_back(floor(El), (Gnss_Satellite(std::string("GPS"), it.second.i_satellite_PRN))); visible_gps.push_back(it.second.i_satellite_PRN); } } const std::map gal_eph_map = pvt_ptr->get_galileo_ephemeris(); for (auto &it : gal_eph_map) { eph_t rtklib_eph = eph_to_rtklib(it.second); std::array r_sat{}; double clock_bias_s; double sat_pos_variance_m2; eph2pos(gps_gtime, &rtklib_eph, r_sat.data(), &clock_bias_s, &sat_pos_variance_m2); double Az; double El; double dist_m; const arma::vec r_sat_eb_e = arma::vec{r_sat[0], r_sat[1], r_sat[2]}; const arma::vec dx = r_sat_eb_e - r_eb_e; topocent(&Az, &El, &dist_m, r_eb_e, dx); // push sat if (El > 0) { std::cout << "Using Galileo Ephemeris: Sat " << it.second.i_satellite_PRN << " Az: " << Az << " El: " << El << '\n'; available_satellites.emplace_back(floor(El), (Gnss_Satellite(std::string("Galileo"), it.second.i_satellite_PRN))); visible_gal.push_back(it.second.i_satellite_PRN); } } const std::map gps_alm_map = pvt_ptr->get_gps_almanac(); for (auto &it : gps_alm_map) { alm_t rtklib_alm = alm_to_rtklib(it.second); std::array r_sat{}; double clock_bias_s; gtime_t aux_gtime; aux_gtime.time = fmod(utc2gpst(gps_gtime).time + 345600, 604800); aux_gtime.sec = 0.0; alm2pos(aux_gtime, &rtklib_alm, r_sat.data(), &clock_bias_s); double Az; double El; double dist_m; const arma::vec r_sat_eb_e = arma::vec{r_sat[0], r_sat[1], r_sat[2]}; const arma::vec dx = r_sat_eb_e - r_eb_e; topocent(&Az, &El, &dist_m, r_eb_e, dx); // push sat std::vector::iterator it2; if (El > 0) { it2 = std::find(visible_gps.begin(), visible_gps.end(), it.second.i_satellite_PRN); if (it2 == visible_gps.end()) { std::cout << "Using GPS Almanac: Sat " << it.second.i_satellite_PRN << " Az: " << Az << " El: " << El << '\n'; available_satellites.emplace_back(floor(El), (Gnss_Satellite(std::string("GPS"), it.second.i_satellite_PRN))); } } } const std::map gal_alm_map = pvt_ptr->get_galileo_almanac(); for (auto &it : gal_alm_map) { alm_t rtklib_alm = alm_to_rtklib(it.second); std::array r_sat{}; double clock_bias_s; gtime_t gal_gtime; gal_gtime.time = fmod(utc2gpst(gps_gtime).time + 345600, 604800); gal_gtime.sec = 0.0; alm2pos(gal_gtime, &rtklib_alm, r_sat.data(), &clock_bias_s); double Az; double El; double dist_m; const arma::vec r_sat_eb_e = arma::vec{r_sat[0], r_sat[1], r_sat[2]}; const arma::vec dx = r_sat_eb_e - r_eb_e; topocent(&Az, &El, &dist_m, r_eb_e, dx); // push sat std::vector::iterator it2; if (El > 0) { it2 = std::find(visible_gal.begin(), visible_gal.end(), it.second.i_satellite_PRN); if (it2 == visible_gal.end()) { std::cout << "Using Galileo Almanac: Sat " << it.second.i_satellite_PRN << " Az: " << Az << " El: " << El << '\n'; available_satellites.emplace_back(floor(El), (Gnss_Satellite(std::string("Galileo"), it.second.i_satellite_PRN))); } } } // sort the visible satellites in ascending order of elevation std::sort(available_satellites.begin(), available_satellites.end(), [](const std::pair &a, const std::pair &b) { // use lambda. Cleaner and easier to read return a.first < b.first; }); // provide list starting from satellites with higher elevation std::reverse(available_satellites.begin(), available_satellites.end()); return available_satellites; } void ControlThread::gps_acq_assist_data_collector() { // ############ 1.bis READ EPHEMERIS/UTC_MODE/IONO QUEUE #################### Gps_Acq_Assist gps_acq; Gps_Acq_Assist gps_acq_old; while (stop_ == false) { global_gps_acq_assist_queue.wait_and_pop(gps_acq); if (gps_acq.i_satellite_PRN == 0) { break; } // DEBUG MESSAGE std::cout << "Acquisition assistance record has arrived from SAT ID " << gps_acq.i_satellite_PRN << " with Doppler " << gps_acq.d_Doppler0 << " [Hz]\n"; // insert new acq record to the global ephemeris map if (global_gps_acq_assist_map.read(gps_acq.i_satellite_PRN, gps_acq_old)) { std::cout << "Acquisition assistance record updated\n"; global_gps_acq_assist_map.write(gps_acq.i_satellite_PRN, gps_acq); } else { // insert new acq record LOG(INFO) << "New acq assist record inserted"; global_gps_acq_assist_map.write(gps_acq.i_satellite_PRN, gps_acq); } } } void ControlThread::sysv_queue_listener() { typedef struct { long mtype; // NOLINT(google-runtime-int) required by SysV queue messaging double stop_message; } stop_msgbuf; bool read_queue = true; stop_msgbuf msg; double received_message = 0.0; int msgrcv_size = sizeof(msg.stop_message); key_t key = 1102; if ((msqid_ = msgget(key, 0644 | IPC_CREAT)) == -1) { std::cerr << "GNSS-SDR cannot create SysV message queues\n"; read_queue = false; } while (read_queue && !stop_) { if (msgrcv(msqid_, &msg, msgrcv_size, 1, 0) != -1) { received_message = msg.stop_message; if ((std::abs(received_message - (-200.0)) < 10 * std::numeric_limits::epsilon())) { std::cout << "Quit order received, stopping GNSS-SDR !!\n"; control_queue_->push(pmt::make_any(command_event_make(200, 0))); read_queue = false; } } } } void ControlThread::keyboard_listener() { bool read_keys = true; char c = '0'; while (read_keys && !stop_) { std::cin.get(c); if (c == 'q') { std::cout << "Quit keystroke order received, stopping GNSS-SDR !!\n"; control_queue_->push(pmt::make_any(command_event_make(200, 0))); read_keys = false; } std::this_thread::sleep_for(std::chrono::milliseconds(100)); } }