/*! * \file gps_l1_ca_gaussian_tracking_cc.cc * \brief Implementation of a processing block of a DLL + Kalman carrier * tracking loop for GPS L1 C/A signals * \author Javier Arribas, 2018. jarribas(at)cttc.es * \author Jordi Vila-Valls 2018. jvila(at)cttc.es * \author Carles Fernandez-Prades 2018. cfernandez(at)cttc.es * * Reference: * J. Vila-Valls, P. Closas, M. Navarro and C. Fernandez-Prades, * "Are PLLs Dead? A Tutorial on Kalman Filter-based Techniques for Digital * Carrier Synchronization", IEEE Aerospace and Electronic Systems Magazine, * Vol. 32, No. 7, pp. 28–45, July 2017. DOI: 10.1109/MAES.2017.150260 * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "gps_l1_ca_gaussian_tracking_cc.h" #include "GPS_L1_CA.h" #include "gnss_satellite.h" #include "gnss_sdr_flags.h" #include "gps_sdr_signal_replica.h" #include "lock_detectors.h" #include "tracking_discriminators.h" #include #include #include #include #include #include #include #include #include #include #include #include #include gps_l1_ca_gaussian_tracking_cc_sptr gps_l1_ca_gaussian_make_tracking_cc( uint32_t order, int64_t fs_in, uint32_t vector_length, bool dump, const std::string &dump_filename, float dll_bw_hz, float early_late_space_chips, bool bce_run, uint32_t bce_ptrans, uint32_t bce_strans, int32_t bce_nu, int32_t bce_kappa) { return gps_l1_ca_gaussian_tracking_cc_sptr(new Gps_L1_Ca_Gaussian_Tracking_cc(order, fs_in, vector_length, dump, dump_filename, dll_bw_hz, early_late_space_chips, bce_run, bce_ptrans, bce_strans, bce_nu, bce_kappa)); } void Gps_L1_Ca_Gaussian_Tracking_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { if (noutput_items != 0) { ninput_items_required[0] = static_cast(d_vector_length) * 2; // set the required available samples in each call } } Gps_L1_Ca_Gaussian_Tracking_cc::Gps_L1_Ca_Gaussian_Tracking_cc( uint32_t order, int64_t fs_in, uint32_t vector_length, bool dump, const std::string &dump_filename, float dll_bw_hz, float early_late_space_chips, bool bce_run, uint32_t bce_ptrans, uint32_t bce_strans, int32_t bce_nu, int32_t bce_kappa) : gr::block("Gps_L1_Ca_Gaussian_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))), d_order(order), d_vector_length(vector_length), d_dump(dump), d_acquisition_gnss_synchro(nullptr), d_channel(0), d_fs_in(fs_in), d_early_late_spc_chips(early_late_space_chips), d_rem_code_phase_samples(0.0), d_rem_code_phase_chips(0.0), d_rem_carr_phase_rad(0.0), bayes_ptrans(bce_ptrans), bayes_strans(bce_strans), bayes_nu(bce_nu), bayes_kappa(bce_kappa), bayes_run(bce_run), kf_iter(0), d_acq_code_phase_samples(0.0), d_acq_carrier_doppler_hz(0.0), d_n_correlator_taps(3), d_code_freq_chips(GPS_L1_CA_CODE_RATE_CPS), d_code_phase_step_chips(0.0), d_code_phase_rate_step_chips(0.0), d_carrier_doppler_hz(0.0), d_carrier_dopplerrate_hz2(0.0), d_carrier_phase_step_rad(0.0), d_acc_carrier_phase_rad(0.0), d_carr_phase_sigma2(0.0), d_code_phase_samples(0.0), code_error_chips(0.0), code_error_filt_chips(0.0), d_current_prn_length_samples(static_cast(d_vector_length)), d_sample_counter(0), d_acq_sample_stamp(0), d_cn0_estimation_counter(0), d_carrier_lock_test(1), d_CN0_SNV_dB_Hz(0), d_carrier_lock_threshold(FLAGS_carrier_lock_th), d_carrier_lock_fail_counter(0), d_enable_tracking(false), d_pull_in(false), d_dump_filename(dump_filename) { // Telemetry bit synchronization message port input this->message_port_register_in(pmt::mp("preamble_timestamp_s")); this->message_port_register_out(pmt::mp("events")); this->message_port_register_in(pmt::mp("telemetry_to_trk")); d_code_loop_filter.set_DLL_BW(dll_bw_hz); // Initialization of local code replica // Get space for a vector with the C/A code replica sampled 1x/chip d_ca_code = volk_gnsssdr::vector(static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS)); d_correlator_outs = volk_gnsssdr::vector(d_n_correlator_taps, gr_complex(0.0, 0.0)); d_local_code_shift_chips = volk_gnsssdr::vector(d_n_correlator_taps); // Set TAPs delay values [chips] d_local_code_shift_chips[0] = -d_early_late_spc_chips; d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = d_early_late_spc_chips; multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps); d_Prompt_buffer = volk_gnsssdr::vector(FLAGS_cn0_samples); systemName["G"] = std::string("GPS"); systemName["S"] = std::string("SBAS"); #if GNURADIO_GREATER_THAN_38 this->set_relative_rate(1, static_cast(d_vector_length)); #else this->set_relative_rate(1.0 / static_cast(d_vector_length)); #endif // Kalman filter initialization (receiver initialization) const double CN_dB_Hz = 30; const double CN_lin = pow(10, CN_dB_Hz / 10.0); const double sigma2_phase_detector_cycles2 = (1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD_S)) * (1.0 + 1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD_S)); // covariances (static) const double sigma2_carrier_phase = TWO_PI / 4; const double sigma2_doppler = 450; const double sigma2_doppler_rate = pow(4.0 * TWO_PI, 2) / 12.0; kf_P_x_ini = arma::zeros(2, 2); kf_P_x_ini(0, 0) = sigma2_carrier_phase; kf_P_x_ini(1, 1) = sigma2_doppler; kf_R = arma::zeros(1, 1); kf_R(0, 0) = sigma2_phase_detector_cycles2; kf_Q = arma::zeros(2, 2); kf_Q(0, 0) = pow(GPS_L1_CA_CODE_PERIOD_S, 4); kf_Q(1, 1) = GPS_L1_CA_CODE_PERIOD_S; kf_F = arma::zeros(2, 2); kf_F(0, 0) = 1.0; kf_F(0, 1) = TWO_PI * GPS_L1_CA_CODE_PERIOD_S; kf_F(1, 0) = 0.0; kf_F(1, 1) = 1.0; kf_H = arma::zeros(1, 2); kf_H(0, 0) = 1.0; kf_x = arma::zeros(2, 1); kf_y = arma::zeros(1, 1); kf_P_y = arma::zeros(1, 1); // order three if (d_order == 3) { kf_P_x_ini = arma::resize(kf_P_x_ini, 3, 3); kf_P_x_ini(2, 2) = sigma2_doppler_rate; kf_Q = arma::zeros(3, 3); kf_Q(0, 0) = pow(GPS_L1_CA_CODE_PERIOD_S, 4); kf_Q(1, 1) = GPS_L1_CA_CODE_PERIOD_S; kf_Q(2, 2) = GPS_L1_CA_CODE_PERIOD_S; kf_F = arma::resize(kf_F, 3, 3); kf_F(0, 2) = 0.5 * TWO_PI * pow(GPS_L1_CA_CODE_PERIOD_S, 2); kf_F(1, 2) = GPS_L1_CA_CODE_PERIOD_S; kf_F(2, 0) = 0.0; kf_F(2, 1) = 0.0; kf_F(2, 2) = 1.0; kf_H = arma::resize(kf_H, 1, 3); kf_H(0, 2) = 0.0; kf_x = arma::resize(kf_x, 3, 1); kf_x(2, 0) = 0.0; } // Gaussian covariance estimator initialization kf_R_est = kf_R; bayes_estimator.init(arma::zeros(1, 1), bayes_kappa, bayes_nu, (kf_H * kf_P_x_ini * kf_H.t() + kf_R) * (bayes_nu + 2)); } void Gps_L1_Ca_Gaussian_Tracking_cc::start_tracking() { /* * correct the code phase according to the delay between acq and trk */ d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; d_acq_carrier_doppler_step_hz = static_cast(d_acquisition_gnss_synchro->Acq_doppler_step); // Correct Kalman filter covariance according to acq doppler step size (3 sigma) if (d_acquisition_gnss_synchro->Acq_doppler_step > 0) { kf_P_x_ini(1, 1) = pow(d_acq_carrier_doppler_step_hz / 3.0, 2); bayes_estimator.init(arma::zeros(1, 1), bayes_kappa, bayes_nu, (kf_H * kf_P_x_ini * kf_H.t() + kf_R) * (bayes_nu + 2)); } int64_t acq_trk_diff_samples; double acq_trk_diff_seconds; acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp); // -d_vector_length; DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples; acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); // Doppler effect Fd = (C / (C + Vr)) * F double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ; // new chip and prn sequence periods based on acq Doppler double T_chip_mod_seconds; double T_prn_mod_seconds; double T_prn_mod_samples; d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_CPS; d_code_phase_step_chips = static_cast(d_code_freq_chips) / static_cast(d_fs_in); T_chip_mod_seconds = 1 / d_code_freq_chips; T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); d_current_prn_length_samples = round(T_prn_mod_samples); double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_CPS; double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; double corrected_acq_phase_samples; double delay_correction_samples; corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); if (corrected_acq_phase_samples < 0) { corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; } delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_dopplerrate_hz2 = 0; d_carrier_phase_step_rad = TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); // DLL filter initialization d_code_loop_filter.initialize(); // initialize the code filter // generate local reference ALWAYS starting at chip 1 (1 sample per chip) gps_l1_ca_code_gen_float(d_ca_code, d_acquisition_gnss_synchro->PRN, 0); multicorrelator_cpu.set_local_code_and_taps(static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code.data(), d_local_code_shift_chips.data()); std::fill_n(d_correlator_outs.begin(), d_n_correlator_taps, gr_complex(0.0, 0.0)); d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0; d_rem_carr_phase_rad = 0.0; d_rem_code_phase_chips = 0.0; d_acc_carrier_phase_rad = 0.0; d_carr_phase_sigma2 = 0.0; d_code_phase_samples = d_acq_code_phase_samples; sys = std::string(1, d_acquisition_gnss_synchro->System); // enable tracking d_pull_in = true; d_enable_tracking = true; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; gr::thread::scoped_lock l(d_setlock); std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << '\n'; LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; } Gps_L1_Ca_Gaussian_Tracking_cc::~Gps_L1_Ca_Gaussian_Tracking_cc() { if (d_dump_file.is_open()) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in Tracking block destructor: " << ex.what(); } } if (d_dump) { if (d_channel == 0) { std::cout << "Writing .mat files ..."; } try { Gps_L1_Ca_Gaussian_Tracking_cc::save_matfile(); } catch (const std::exception &ex) { LOG(WARNING) << "Error saving the .mat file: " << ex.what(); } if (d_channel == 0) { std::cout << " done.\n"; } } try { multicorrelator_cpu.free(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in Tracking block destructor: " << ex.what(); } } int32_t Gps_L1_Ca_Gaussian_Tracking_cc::save_matfile() { // READ DUMP FILE std::ifstream::pos_type size; int32_t number_of_double_vars = 1; int32_t number_of_float_vars = 19; int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars + sizeof(float) * number_of_float_vars + sizeof(uint32_t); std::ifstream dump_file; dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); try { dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); } catch (const std::ifstream::failure &e) { std::cerr << "Problem opening dump file:" << e.what() << '\n'; return 1; } // count number of epochs and rewind int64_t num_epoch = 0; if (dump_file.is_open()) { size = dump_file.tellg(); num_epoch = static_cast(size) / static_cast(epoch_size_bytes); dump_file.seekg(0, std::ios::beg); } else { return 1; } auto abs_VE = std::vector(num_epoch); auto abs_E = std::vector(num_epoch); auto abs_P = std::vector(num_epoch); auto abs_L = std::vector(num_epoch); auto abs_VL = std::vector(num_epoch); auto Prompt_I = std::vector(num_epoch); auto Prompt_Q = std::vector(num_epoch); auto PRN_start_sample_count = std::vector(num_epoch); auto acc_carrier_phase_rad = std::vector(num_epoch); auto carrier_doppler_hz = std::vector(num_epoch); auto carrier_dopplerrate_hz2 = std::vector(num_epoch); auto code_freq_chips = std::vector(num_epoch); auto carr_error_hz = std::vector(num_epoch); auto carr_noise_sigma2 = std::vector(num_epoch); auto carr_error_filt_hz = std::vector(num_epoch); auto code_error_chips_aux = std::vector(num_epoch); auto code_error_filt_chips_aux = std::vector(num_epoch); auto CN0_SNV_dB_Hz = std::vector(num_epoch); auto carrier_lock_test = std::vector(num_epoch); auto aux1 = std::vector(num_epoch); auto aux2 = std::vector(num_epoch); auto PRN = std::vector(num_epoch); try { if (dump_file.is_open()) { for (int64_t i = 0; i < num_epoch; i++) { dump_file.read(reinterpret_cast(&abs_VE[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_E[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_P[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_L[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_VL[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_I[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_Q[i]), sizeof(float)); dump_file.read(reinterpret_cast(&PRN_start_sample_count[i]), sizeof(uint64_t)); dump_file.read(reinterpret_cast(&acc_carrier_phase_rad[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_doppler_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_dopplerrate_hz2[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_freq_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_error_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_noise_sigma2[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_error_filt_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_error_chips_aux[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_error_filt_chips_aux[i]), sizeof(float)); dump_file.read(reinterpret_cast(&CN0_SNV_dB_Hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_lock_test[i]), sizeof(float)); dump_file.read(reinterpret_cast(&aux1[i]), sizeof(float)); dump_file.read(reinterpret_cast(&aux2[i]), sizeof(double)); dump_file.read(reinterpret_cast(&PRN[i]), sizeof(uint32_t)); } } dump_file.close(); } catch (const std::ifstream::failure &e) { std::cerr << "Problem reading dump file:" << e.what() << '\n'; return 1; } // WRITE MAT FILE mat_t *matfp; matvar_t *matvar; std::string filename = d_dump_filename; filename.erase(filename.length() - 4, 4); filename.append(".mat"); matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73); if (reinterpret_cast(matfp) != nullptr) { std::array dims{1, static_cast(num_epoch)}; matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_VE.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_E.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_P.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_L.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_VL.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_I.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_Q.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims.data(), PRN_start_sample_count.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), acc_carrier_phase_rad.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carrier_doppler_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_dopplerrate_hz2", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carrier_dopplerrate_hz2.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_freq_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_freq_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carr_error_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_noise_sigma2", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carr_noise_sigma2.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carr_error_filt_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_error_chips_aux.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_error_filt_chips_aux.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), CN0_SNV_dB_Hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_lock_test", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carrier_lock_test.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux1", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), aux1.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), aux2.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), PRN.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); } Mat_Close(matfp); return 0; } void Gps_L1_Ca_Gaussian_Tracking_cc::set_channel(uint32_t channel) { gr::thread::scoped_lock l(d_setlock); d_channel = channel; LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump) { if (!d_dump_file.is_open()) { try { d_dump_filename.append(std::to_string(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions(std::ofstream::failbit | std::ofstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (const std::ofstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void Gps_L1_Ca_Gaussian_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; } int Gps_L1_Ca_Gaussian_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // process vars d_carr_phase_error_rad = 0.0; code_error_chips = 0.0; code_error_filt_chips = 0.0; bool loss_of_lock = false; // Block input data and block output stream pointers const auto *in = reinterpret_cast(input_items[0]); auto **out = reinterpret_cast(&output_items[0]); // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data = Gnss_Synchro(); gr::thread::scoped_lock l(d_setlock); if (d_enable_tracking == true) { // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // Receiver signal alignment if (d_pull_in == true) { // Signal alignment (skip samples until the incoming signal is aligned with local replica) uint64_t acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; double acq_trk_shif_correction_samples = static_cast(d_current_prn_length_samples) - std::fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_current_prn_length_samples)); int32_t samples_offset = std::round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); if (samples_offset < 0) { samples_offset = 0; } d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_acq_code_phase_samples; d_sample_counter += samples_offset; // count for the processed samples d_pull_in = false; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.fs = d_fs_in; current_synchro_data.correlation_length_ms = 1; *out[0] = std::move(current_synchro_data); // Kalman filter initialization reset kf_P_x = kf_P_x_ini; // Update Kalman states based on acquisition information kf_x(0) = d_carrier_phase_step_rad * samples_offset; kf_x(1) = d_carrier_doppler_hz; if (kf_x.n_elem > 2) { kf_x(2) = d_carrier_dopplerrate_hz2; } // Covariance estimation initialization reset kf_iter = 0; bayes_estimator.init(arma::zeros(1, 1), bayes_kappa, bayes_nu, (kf_H * kf_P_x_ini * kf_H.t() + kf_R) * (bayes_nu + 2)); consume_each(samples_offset); // shift input to perform alignment with local replica return 1; } // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // Perform carrier wipe-off and compute Early, Prompt and Late correlation multicorrelator_cpu.set_input_output_vectors(d_correlator_outs.data(), in); multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad, static_cast(d_carrier_phase_step_rad), static_cast(d_rem_code_phase_chips), static_cast(d_code_phase_step_chips), static_cast(d_code_phase_rate_step_chips), d_current_prn_length_samples); // ################## Kalman Carrier Tracking ###################################### // Kalman state prediction (time update) kf_x_pre = kf_F * kf_x; // state prediction kf_P_x_pre = kf_F * kf_P_x * kf_F.t() + kf_Q; // state error covariance prediction // Update discriminator [rads/Ti] d_carr_phase_error_rad = pll_cloop_two_quadrant_atan(d_correlator_outs[1]); // prompt output // Kalman estimation (measurement update) double sigma2_phase_detector_cycles2; const double CN_lin = pow(10, d_CN0_SNV_dB_Hz / 10.0); sigma2_phase_detector_cycles2 = (1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD_S)) * (1.0 + 1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD_S)); kf_y(0) = d_carr_phase_error_rad; // measurement vector kf_R(0, 0) = sigma2_phase_detector_cycles2; if (bayes_run && (kf_iter >= bayes_ptrans)) { bayes_estimator.update_sequential(kf_y); } if (bayes_run && (kf_iter >= (bayes_ptrans + bayes_strans))) { // TODO: Resolve segmentation fault kf_P_y = bayes_estimator.get_Psi_est(); kf_R_est = kf_P_y - kf_H * kf_P_x_pre * kf_H.t(); } else { kf_P_y = kf_H * kf_P_x_pre * kf_H.t() + kf_R; // innovation covariance matrix kf_R_est = kf_R; } // Kalman filter update step kf_K = (kf_P_x_pre * kf_H.t()) * arma::inv(kf_P_y); // Kalman gain kf_x = kf_x_pre + kf_K * kf_y; // updated state estimation kf_P_x = (arma::eye(size(kf_P_x_pre)) - kf_K * kf_H) * kf_P_x_pre; // update state estimation error covariance matrix // Store Kalman filter results d_rem_carr_phase_rad = kf_x(0); // set a new carrier Phase estimation to the NCO d_carrier_doppler_hz = kf_x(1); // set a new carrier Doppler estimation to the NCO if (kf_x.n_elem > 2) { d_carrier_dopplerrate_hz2 = kf_x(2); } else { d_carrier_dopplerrate_hz2 = 0; } d_carr_phase_sigma2 = kf_R_est(0, 0); // ################## DLL ########################################################## // New code Doppler frequency estimation based on carrier frequency estimation d_code_freq_chips = GPS_L1_CA_CODE_RATE_CPS + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_CPS) / GPS_L1_FREQ_HZ); // DLL discriminator code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2], static_cast(d_early_late_spc_chips), 1.0); // [chips/Ti] early and late // Code discriminator filter code_error_filt_chips = d_code_loop_filter.get_code_nco(static_cast(code_error_chips)); // [chips/second] double T_chip_seconds = 1.0 / static_cast(d_code_freq_chips); double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); // [seconds] // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### // keep alignment parameters for the next input buffer // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast(d_fs_in); d_current_prn_length_samples = static_cast(round(K_blk_samples)); // round to a discrete number of samples // ################### NCO COMMANDS ################################################# // carrier phase step (NCO phase increment per sample) [rads/sample] d_carrier_phase_step_rad = TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); // carrier phase accumulator d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * static_cast(d_current_prn_length_samples); // ################### DLL COMMANDS ################################################# // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); // remnant code phase [chips] d_rem_code_phase_samples = K_blk_samples - static_cast(d_current_prn_length_samples); // rounding error < 1 sample d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast(d_fs_in)); // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < FLAGS_cn0_samples) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_m2m4_estimator(d_Prompt_buffer.data(), FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD_S); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer.data(), FLAGS_cn0_samples); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) { // if (d_channel == 1) // std::cout << "Carrier Lock Test Fail in channel " << d_channel << ": " << d_carrier_lock_test << " < " << d_carrier_lock_threshold << "," << nfail++ << '\n'; d_carrier_lock_fail_counter++; // nfail++; } else { if (d_carrier_lock_fail_counter > 0) { d_carrier_lock_fail_counter--; } } if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) { std::cout << "Loss of lock in channel " << d_channel << "!\n"; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock d_carrier_lock_fail_counter = 0; d_enable_tracking = false; loss_of_lock = true; } } // ########### Output the tracking data to navigation and PVT ########## current_synchro_data.Prompt_I = static_cast((d_correlator_outs[1]).real()); current_synchro_data.Prompt_Q = static_cast((d_correlator_outs[1]).imag()); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_current_prn_length_samples); current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = !loss_of_lock; current_synchro_data.correlation_length_ms = 1; kf_iter++; } else { for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_current_prn_length_samples); current_synchro_data.System = {'G'}; current_synchro_data.correlation_length_ms = 1; } // assign the GNU Radio block output data current_synchro_data.fs = d_fs_in; *out[0] = std::move(current_synchro_data); if (d_dump) { // MULTIPLEXED FILE RECORDING - Record results to file float prompt_I; float prompt_Q; float tmp_E; float tmp_P; float tmp_L; float tmp_VE = 0.0; float tmp_VL = 0.0; float tmp_float; double tmp_double; prompt_I = d_correlator_outs[1].real(); prompt_Q = d_correlator_outs[1].imag(); tmp_E = std::abs(d_correlator_outs[0]); tmp_P = std::abs(d_correlator_outs[1]); tmp_L = std::abs(d_correlator_outs[2]); try { // EPR d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); // PRN start sample stamp d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(uint64_t)); // accumulated carrier phase tmp_float = static_cast(d_acc_carrier_phase_rad); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier and code frequency tmp_float = static_cast(d_carrier_doppler_hz); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_carrier_dopplerrate_hz2); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_code_freq_chips); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // Kalman commands tmp_float = static_cast(d_carr_phase_error_rad * TWO_PI); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_carr_phase_sigma2); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_rem_carr_phase_rad * TWO_PI); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // DLL commands tmp_float = static_cast(code_error_chips); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(code_error_filt_chips); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // CN0 and carrier lock test tmp_float = static_cast(d_CN0_SNV_dB_Hz); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_carrier_lock_test); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // AUX vars (for debug purposes) tmp_float = static_cast(d_rem_code_phase_samples); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_double = static_cast(d_sample_counter + static_cast(d_current_prn_length_samples)); d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); // PRN uint32_t prn_ = d_acquisition_gnss_synchro->PRN; d_dump_file.write(reinterpret_cast(&prn_), sizeof(uint32_t)); } catch (const std::ofstream::failure &e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates d_sample_counter += d_current_prn_length_samples; // count for the processed samples return 1; // output tracking result ALWAYS even in the case of d_enable_tracking==false }