/*! * \file pcps_acquisition_cc.cc * \brief This class implements a Parallel Code Phase Search Acquisition * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "pcps_acquisition_cc.h" #include #include #include #include #include #include "gnss_signal_processing.h" #include "control_message_factory.h" using google::LogMessage; pcps_acquisition_cc_sptr pcps_make_acquisition_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, bool bit_transition_flag, gr::msg_queue::sptr queue, bool dump, std::string dump_filename) { return pcps_acquisition_cc_sptr( new pcps_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, samples_per_code, bit_transition_flag, queue, dump, dump_filename)); } pcps_acquisition_cc::pcps_acquisition_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, bool bit_transition_flag, gr::msg_queue::sptr queue, bool dump, std::string dump_filename) : gr::block("pcps_acquisition_cc", gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms), gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms)) { d_sample_counter = 0; // SAMPLE COUNTER d_active = false; d_state = 0; d_queue = queue; d_freq = freq; d_fs_in = fs_in; d_samples_per_ms = samples_per_ms; d_samples_per_code = samples_per_code; d_sampled_ms = sampled_ms; d_max_dwells = max_dwells; d_well_count = 0; d_doppler_max = doppler_max; d_fft_size = d_sampled_ms * d_samples_per_ms; d_mag = 0; d_input_power = 0.0; d_num_doppler_bins = 0; d_bit_transition_flag = bit_transition_flag; d_fft_codes = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); d_magnitude = static_cast(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment())); // Direct FFT d_fft_if = new gr::fft::fft_complex(d_fft_size, true); // Inverse FFT d_ifft = new gr::fft::fft_complex(d_fft_size, false); // For dumping samples into a file d_dump = dump; d_dump_filename = dump_filename; } pcps_acquisition_cc::~pcps_acquisition_cc() { if (d_num_doppler_bins > 0) { for (unsigned int i = 0; i < d_num_doppler_bins; i++) { volk_free(d_grid_doppler_wipeoffs[i]); } delete[] d_grid_doppler_wipeoffs; } volk_free(d_fft_codes); volk_free(d_magnitude); delete d_ifft; delete d_fft_if; if (d_dump) { d_dump_file.close(); } } void pcps_acquisition_cc::set_local_code(std::complex * code) { memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_fft_size); d_fft_if->execute(); // We need the FFT of local code volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size); } void pcps_acquisition_cc::init() { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_mag = 0.0; d_input_power = 0.0; // Count the number of bins d_num_doppler_bins = 0; for (int doppler = static_cast(-d_doppler_max); doppler <= static_cast(d_doppler_max); doppler += d_doppler_step) { d_num_doppler_bins++; } // Create the carrier Doppler wipeoff signals d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins]; for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { d_grid_doppler_wipeoffs[doppler_index] = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); int doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index], d_freq + doppler, d_fs_in, d_fft_size); } } int pcps_acquisition_cc::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { /* * By J.Arribas, L.Esteve and M.Molina * Acquisition strategy (Kay Borre book + CFAR threshold): * 1. Compute the input signal power estimation * 2. Doppler serial search loop * 3. Perform the FFT-based circular convolution (parallel time search) * 4. Record the maximum peak and the associated synchronization parameters * 5. Compute the test statistics and compare to the threshold * 6. Declare positive or negative acquisition using a message queue */ int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL switch (d_state) { case 0: { if (d_active) { //restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; } d_sample_counter += d_fft_size * ninput_items[0]; // sample counter consume_each(ninput_items[0]); break; } case 1: { // initialize acquisition algorithm int doppler; unsigned int indext = 0; float magt = 0.0; const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_input_power = 0.0; d_mag = 0.0; d_sample_counter += d_fft_size; // sample counter d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN << " ,sample stamp: " << d_sample_counter << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step; // 1- Compute the input signal power estimation volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size); d_input_power /= static_cast(d_fft_size); // 2- Doppler frequency search loop for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++) { // doppler search steps doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); // 3- Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd code reference using SIMD operations with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); // compute the inverse FFT d_ifft->execute(); // Search maximum volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size); volk_32f_index_max_16u(&indext, d_magnitude, d_fft_size); // Normalize the maximum value to correct the scale factor introduced by FFTW magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); // 4- record the maximum peak and the associated synchronization parameters if (d_mag < magt) { d_mag = magt; // In case that d_bit_transition_flag = true, we compare the potentially // new maximum test statistics (d_mag/d_input_power) with the value in // d_test_statistics. When the second dwell is being processed, the value // of d_mag/d_input_power could be lower than d_test_statistics (i.e, // the maximum test statistics in the previous dwell is greater than // current d_mag/d_input_power). Note that d_test_statistics is not // restarted between consecutive dwells in multidwell operation. if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag) { d_gnss_synchro->Acq_delay_samples = static_cast(indext % d_samples_per_code); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; // 5- Compute the test statistics and compare to the threshold //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; d_test_statistics = d_mag / d_input_power; } } // Record results to file if required if (d_dump) { std::stringstream filename; std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write filename.str(""); filename << "../data/test_statistics_" << d_gnss_synchro->System <<"_" << d_gnss_synchro->Signal << "_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin? d_dump_file.close(); } } if (!d_bit_transition_flag) { if (d_test_statistics > d_threshold) { d_state = 2; // Positive acquisition } else if (d_well_count == d_max_dwells) { d_state = 3; // Negative acquisition } } else { if (d_well_count == d_max_dwells) // d_max_dwells = 2 { if (d_test_statistics > d_threshold) { d_state = 2; // Positive acquisition } else { d_state = 3; // Negative acquisition } } } consume_each(1); break; } case 2: { // 6.1- Declare positive acquisition using a message queue DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += d_fft_size * ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 1; d_channel_internal_queue->push(acquisition_message); break; } case 3: { // 6.2- Declare negative acquisition using a message queue DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += d_fft_size * ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 2; d_channel_internal_queue->push(acquisition_message); break; } } return 0; }