/*! * \file gps_l1_ca_pcps_quicksync_acquisition.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for * GPS L1 C/A signals using the QuickSync Algorithm * \author Damian Miralles, 2014. dmiralles2009@gmail.com * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_pcps_quicksync_acquisition.h" #include #include #include #include #include #include #include "gps_sdr_signal_processing.h" #include "GPS_L1_CA.h" #include "configuration_interface.h" using google::LogMessage; GpsL1CaPcpsQuickSyncAcquisition::GpsL1CaPcpsQuickSyncAcquisition( ConfigurationInterface* configuration, std::string role, unsigned int in_streams, unsigned int out_streams, gr::msg_queue::sptr queue) : role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue) { configuration_ = configuration; std::string default_item_type = "gr_complex"; std::string default_dump_filename = "./data/acquisition.dat"; DLOG(INFO) << "role " << role; item_type_ = configuration_->property(role + ".item_type", default_item_type); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); if_ = configuration_->property(role + ".ifreq", 0); dump_ = configuration_->property(role + ".dump", false); shift_resolution_ = configuration_->property(role + ".doppler_max", 15); sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); //--- Find number of samples per spreading code ------------------------- code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); /*Calculate the folding factor value based on the calculations*/ unsigned int temp = (unsigned int)ceil(sqrt(log2(code_length_))); folding_factor_ = configuration_->property(role + ".folding_factor", temp); if ( sampled_ms_ % folding_factor_ != 0) { LOG(WARNING) << "QuickSync Algorithm requires a coherent_integration_time" << " multiple of " << folding_factor_ << "ms, Value entered " << sampled_ms_ << " ms"; if(sampled_ms_ < folding_factor_) { sampled_ms_ = (int) folding_factor_; } else { sampled_ms_ = (int)(sampled_ms_/folding_factor_) * folding_factor_; } LOG(WARNING) <<" Coherent_integration_time of " << sampled_ms_ << " ms will be used instead."; } vector_length_ = code_length_ * sampled_ms_; bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); if (!bit_transition_flag_) { max_dwells_ = configuration_->property(role + ".max_dwells", 1); } else { max_dwells_ = 2; } dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); int samples_per_ms = round(code_length_); code_= new gr_complex[code_length_]; /*Object relevant information for debugging*/ LOG(INFO) <<"Implementation: "<implementation() <<", Vector Length: "<unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; } else { LOG(WARNING) << item_type_ << " unknown acquisition item type"; } } GpsL1CaPcpsQuickSyncAcquisition::~GpsL1CaPcpsQuickSyncAcquisition() { delete[] code_; } void GpsL1CaPcpsQuickSyncAcquisition::set_channel(unsigned int channel) { channel_ = channel; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_channel(channel_); } } void GpsL1CaPcpsQuickSyncAcquisition::set_threshold(float threshold) { float pfa = configuration_->property(role_ + boost::lexical_cast(channel_) + ".pfa", 0.0); if(pfa == 0.0) { pfa = configuration_->property(role_+".pfa", 0.0); } if(pfa == 0.0) { threshold_ = threshold; } else { threshold_ = calculate_threshold(pfa); } DLOG(INFO) <<"Channel "<set_threshold(threshold_); } } void GpsL1CaPcpsQuickSyncAcquisition::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_doppler_max(doppler_max_); } } void GpsL1CaPcpsQuickSyncAcquisition::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_doppler_step(doppler_step_); } } void GpsL1CaPcpsQuickSyncAcquisition::set_channel_queue( concurrent_queue *channel_internal_queue) { channel_internal_queue_ = channel_internal_queue; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_channel_queue(channel_internal_queue_); } } void GpsL1CaPcpsQuickSyncAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_gnss_synchro(gnss_synchro_); } } signed int GpsL1CaPcpsQuickSyncAcquisition::mag() { if (item_type_.compare("gr_complex") == 0) { return acquisition_cc_->mag(); } else { return 0; } } void GpsL1CaPcpsQuickSyncAcquisition::init() { acquisition_cc_->init(); set_local_code(); } void GpsL1CaPcpsQuickSyncAcquisition::set_local_code() { if (item_type_.compare("gr_complex") == 0) { std::complex* code = new std::complex[code_length_]; gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); for (unsigned int i = 0; i < (sampled_ms_/folding_factor_); i++) { memcpy(&(code_[i*code_length_]), code, sizeof(gr_complex)*code_length_); } //memcpy(code_, code,sizeof(gr_complex)*code_length_); acquisition_cc_->set_local_code(code_); delete[] code; } } void GpsL1CaPcpsQuickSyncAcquisition::reset() { if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_active(true); } } float GpsL1CaPcpsQuickSyncAcquisition::calculate_threshold(float pfa) { //Calculate the threshold unsigned int frequency_bins = 0; for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_) { frequency_bins++; } DLOG(INFO) << "Channel " << channel_<< " Pfa = " << pfa; unsigned int ncells = (code_length_ / folding_factor_) * frequency_bins; double exponent = 1 / static_cast(ncells); double val = pow(1.0 - pfa, exponent); double lambda = double((code_length_ / folding_factor_)); boost::math::exponential_distribution mydist (lambda); float threshold = (float)quantile(mydist,val); return threshold; } void GpsL1CaPcpsQuickSyncAcquisition::connect(gr::top_block_sptr top_block) { if (item_type_.compare("gr_complex") == 0) { top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0); } } void GpsL1CaPcpsQuickSyncAcquisition::disconnect(gr::top_block_sptr top_block) { if (item_type_.compare("gr_complex") == 0) { top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0); } } gr::basic_block_sptr GpsL1CaPcpsQuickSyncAcquisition::get_left_block() { return stream_to_vector_; } gr::basic_block_sptr GpsL1CaPcpsQuickSyncAcquisition::get_right_block() { return acquisition_cc_; }