/*!
* \file rtcm_test.cc
* \brief This file implements unit tests for the Rtcm class.
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include
#include
#include "rtcm.h"
TEST(Rtcm_Test, Hex_to_bin)
{
auto rtcm = std::make_shared();
std::string test1 = "2A";
std::string test1_bin = rtcm->hex_to_bin(test1);
EXPECT_EQ(0, test1_bin.compare("00101010"));
std::string test2 = "FF";
std::string test2_bin = rtcm->hex_to_bin(test2);
EXPECT_EQ(0, test2_bin.compare("11111111"));
std::string test3 = "ff";
std::string test3_bin = rtcm->hex_to_bin(test3);
EXPECT_EQ(0, test3_bin.compare("11111111"));
std::string test4 = "100";
std::string test4_bin = rtcm->hex_to_bin(test4);
EXPECT_EQ(0, test4_bin.compare("000100000000"));
std::string test5 = "1101";
std::string test5_bin = rtcm->hex_to_bin(test5);
EXPECT_EQ(0, test5_bin.compare("0001000100000001"));
std::string test6 = "3";
std::string test6_bin = rtcm->hex_to_bin(test6);
EXPECT_EQ(0, test6_bin.compare("0011"));
}
TEST(Rtcm_Test, Bin_to_hex)
{
auto rtcm = std::make_shared();
std::string test1 = "00101010";
std::string test1_hex = rtcm->bin_to_hex(test1);
EXPECT_EQ(0, test1_hex.compare("2A"));
std::string test2 = "11111111";
std::string test2_hex = rtcm->bin_to_hex(test2);
EXPECT_EQ(0, test2_hex.compare("FF"));
std::string test4 = "000100000000";
std::string test4_hex = rtcm->bin_to_hex(test4);
EXPECT_EQ(0, test4_hex.compare("100"));
std::string test5 = "0001000100000001";
std::string test5_hex = rtcm->bin_to_hex(test5);
EXPECT_EQ(0, test5_hex.compare("1101"));
std::string test6 = "0011";
std::string test6_hex = rtcm->bin_to_hex(test6);
EXPECT_EQ(0, test6_hex.compare("3"));
std::string test7 = "11";
std::string test7_hex = rtcm->bin_to_hex(test7);
EXPECT_EQ(0, test7_hex.compare("3"));
std::string test8 = "1000100000001";
std::string test8_hex = rtcm->bin_to_hex(test8);
EXPECT_EQ(0, test8_hex.compare("1101"));
}
TEST(Rtcm_Test, Hex_to_int)
{
auto rtcm = std::make_shared();
std::string test1 = "2A";
long int test1_int = rtcm->hex_to_int(test1);
long int expected1 = 42;
EXPECT_EQ(expected1, test1_int);
}
TEST(Rtcm_Test, Hex_to_uint)
{
auto rtcm = std::make_shared();
long unsigned int expected1 = 42;
EXPECT_EQ(expected1, rtcm->hex_to_uint(rtcm->bin_to_hex("00101010")));
}
TEST(Rtcm_Test, Bin_to_double)
{
auto rtcm = std::make_shared();
std::bitset<4> test1(5);
long int test1_int = static_cast(rtcm->bin_to_double(test1.to_string()));
long int expected1 = 5;
EXPECT_EQ(expected1, test1_int);
std::bitset<4> test2(-5);
EXPECT_DOUBLE_EQ(-5, rtcm->bin_to_double(test2.to_string()));
std::bitset<65> test3(-5);
EXPECT_DOUBLE_EQ(0, rtcm->bin_to_double(test3.to_string()));
}
TEST(Rtcm_Test, Bin_to_uint)
{
auto rtcm = std::make_shared();
long unsigned int expected1 = 42;
EXPECT_EQ(expected1, rtcm->bin_to_uint("00101010"));
long unsigned int expected2 = 214;
EXPECT_EQ(expected2, rtcm->bin_to_uint("11010110"));
}
TEST(Rtcm_Test, Bin_to_int)
{
auto rtcm = std::make_shared();
long unsigned int expected1 = 42;
EXPECT_EQ(expected1, rtcm->bin_to_int("00101010"));
long unsigned int expected2 = -42;
EXPECT_EQ(expected2, rtcm->bin_to_int("11010110"));
}
TEST(Rtcm_Test, Check_CRC)
{
auto rtcm = std::make_shared();
EXPECT_EQ(true, rtcm->check_CRC("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B98"));
EXPECT_EQ(false, rtcm->check_CRC("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B99"));
EXPECT_EQ(true, rtcm->check_CRC(rtcm->print_MT1005_test()));
EXPECT_EQ(true, rtcm->check_CRC(rtcm->print_MT1005_test())); // Run twice to check that CRC has no memory
}
TEST(Rtcm_Test, Test_MT1005)
{
auto rtcm = std::make_shared();
std::string reference_msg = rtcm->print_MT1005_test();
std::string reference_msg2 = rtcm->print_MT1005(2003, 1114104.5999, -4850729.7108, 3975521.4643, true, false, false, false, false, 0);
EXPECT_EQ(0, reference_msg.compare(reference_msg2));
unsigned int ref_id;
double ecef_x;
double ecef_y;
double ecef_z;
bool gps;
bool glonass;
bool galileo;
rtcm->read_MT1005(reference_msg, ref_id, ecef_x, ecef_y, ecef_z, gps, glonass, galileo);
EXPECT_EQ(true, gps);
EXPECT_EQ(false, glonass);
EXPECT_EQ(false, galileo);
EXPECT_EQ(2003, ref_id);
EXPECT_DOUBLE_EQ(1114104.5999, ecef_x);
EXPECT_DOUBLE_EQ(-4850729.7108, ecef_y);
EXPECT_DOUBLE_EQ(3975521.4643, ecef_z);
rtcm->read_MT1005("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B98", ref_id, ecef_x, ecef_y, ecef_z, gps, glonass, galileo);
EXPECT_EQ(true, gps);
EXPECT_EQ(false, glonass);
EXPECT_EQ(false, galileo);
EXPECT_EQ(2003, ref_id);
EXPECT_DOUBLE_EQ(1114104.5999, ecef_x);
EXPECT_DOUBLE_EQ(-4850729.7108, ecef_y);
EXPECT_DOUBLE_EQ(3975521.4643, ecef_z);
}
TEST(Rtcm_Test, Test_MT1019)
{
auto rtcm = std::make_shared();
Gps_Ephemeris gps_eph = Gps_Ephemeris();
Gps_Ephemeris gps_eph_read = Gps_Ephemeris();
gps_eph.i_satellite_PRN = 3;
gps_eph.d_IODC = 4;
gps_eph.d_e_eccentricity = 2.0 * E_LSB;
gps_eph.b_fit_interval_flag = true;
std::string tx_msg = rtcm->print_MT1019(gps_eph);
EXPECT_EQ(0, rtcm->read_MT1019(tx_msg, gps_eph_read));
EXPECT_EQ(3, gps_eph_read.i_satellite_PRN);
EXPECT_DOUBLE_EQ(4, gps_eph_read.d_IODC);
EXPECT_DOUBLE_EQ( 2.0 * E_LSB, gps_eph_read.d_e_eccentricity);
EXPECT_EQ(true, gps_eph_read.b_fit_interval_flag);
EXPECT_EQ(1, rtcm->read_MT1019("FFFFFFFFFFF", gps_eph_read));
}
TEST(Rtcm_Test, Test_MT1045)
{
auto rtcm = std::make_shared();
Galileo_Ephemeris gal_eph = Galileo_Ephemeris();
Galileo_Ephemeris gal_eph_read = Galileo_Ephemeris();
gal_eph.i_satellite_PRN = 5;
gal_eph.OMEGA_dot_3 = 53.0 * OMEGA_dot_3_LSB;
gal_eph.E5a_DVS = true;
std::string tx_msg = rtcm->print_MT1045(gal_eph);
EXPECT_EQ(0, rtcm->read_MT1045(tx_msg, gal_eph_read));
EXPECT_EQ(true, gal_eph_read.E5a_DVS);
EXPECT_DOUBLE_EQ( 53.0 * OMEGA_dot_3_LSB, gal_eph_read.OMEGA_dot_3);
EXPECT_EQ(5, gal_eph_read.i_satellite_PRN);
EXPECT_EQ(1, rtcm->read_MT1045("FFFFFFFFFFF", gal_eph_read));
}
TEST(Rtcm_Test, MT1001)
{
auto rtcm = std::make_shared();
Gps_Ephemeris gps_eph = Gps_Ephemeris();
Gnss_Synchro gnss_synchro;
gnss_synchro.PRN = 2;
std::string sys = "G";
std::string sig = "1C";
gnss_synchro.System = *sys.c_str();
std::memcpy((void*)gnss_synchro.Signal, sig.c_str(), 3);
gnss_synchro.Pseudorange_m = 20000000.0;
double obs_time = 25.0;
std::map pseudoranges;
pseudoranges.insert(std::pair(1, gnss_synchro));
std::string MT1001 = rtcm->print_MT1001(gps_eph, obs_time, pseudoranges);
EXPECT_EQ(true, rtcm->check_CRC(MT1001));
}
TEST(Rtcm_Test, MSMCell)
{
auto rtcm = std::make_shared();
Gps_Ephemeris gps_eph = Gps_Ephemeris();
Galileo_Ephemeris gal_eph = Galileo_Ephemeris();
std::map pseudoranges;
Gnss_Synchro gnss_synchro;
Gnss_Synchro gnss_synchro2;
Gnss_Synchro gnss_synchro3;
Gnss_Synchro gnss_synchro4;
Gnss_Synchro gnss_synchro5;
gnss_synchro.PRN = 4;
gnss_synchro2.PRN = 8;
gnss_synchro3.PRN = 32;
gnss_synchro4.PRN = 10;
gnss_synchro5.PRN = 10;
std::string gps = "G";
std::string gal = "E";
std::string c1 = "1C";
std::string s2 = "2S";
std::string x5 = "5X";
gnss_synchro.System = *gal.c_str();
gnss_synchro2.System = *gps.c_str();
gnss_synchro3.System = *gps.c_str();
gnss_synchro4.System = *gal.c_str();
gnss_synchro5.System = *gps.c_str();
std::memcpy((void*)gnss_synchro.Signal, x5.c_str(), 3);
std::memcpy((void*)gnss_synchro2.Signal, s2.c_str(), 3);
std::memcpy((void*)gnss_synchro3.Signal, c1.c_str(), 3);
std::memcpy((void*)gnss_synchro4.Signal, x5.c_str(), 3);
std::memcpy((void*)gnss_synchro5.Signal, c1.c_str(), 3);
gnss_synchro.Pseudorange_m = 20000000.0;
gnss_synchro2.Pseudorange_m = 20001010.0;
gnss_synchro3.Pseudorange_m = 24002020.0;
gnss_synchro4.Pseudorange_m = 20003010.1;
gnss_synchro5.Pseudorange_m = 22003010.1;
pseudoranges.insert(std::pair(1, gnss_synchro));
pseudoranges.insert(std::pair(2, gnss_synchro2));
pseudoranges.insert(std::pair(3, gnss_synchro3));
pseudoranges.insert(std::pair(4, gnss_synchro4));
pseudoranges.insert(std::pair(5, gnss_synchro5));
unsigned int ref_id = 1234;
unsigned int clock_steering_indicator = 0;
unsigned int external_clock_indicator = 0;
int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
bool more_messages = false;
double obs_time = 25.0;
gps_eph.i_satellite_PRN = gnss_synchro2.PRN;
gal_eph.i_satellite_PRN = gnss_synchro.PRN;
std::string MSM1 = rtcm->print_MSM_1(gps_eph,
{},
gal_eph,
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
sync_flag,
divergence_free,
more_messages);
std::string MSM1_bin = rtcm->hex_to_bin(MSM1);
unsigned int Nsat = 4;
unsigned int Nsig = 3;
unsigned int size_header = 14;
unsigned int size_msg_length = 10;
EXPECT_EQ(0, MSM1_bin.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("001010101100")); // check cell mask
std::map pseudoranges2;
pseudoranges2.insert(std::pair(1, gnss_synchro5));
pseudoranges2.insert(std::pair(2, gnss_synchro4));
pseudoranges2.insert(std::pair(3, gnss_synchro3));
pseudoranges2.insert(std::pair(4, gnss_synchro2));
pseudoranges2.insert(std::pair(5, gnss_synchro));
std::string MSM1_2 = rtcm->print_MSM_1(gps_eph,
{},
gal_eph,
obs_time,
pseudoranges2,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
sync_flag,
divergence_free,
more_messages);
std::string MSM1_bin_2 = rtcm->hex_to_bin(MSM1_2);
EXPECT_EQ(0, MSM1_bin_2.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("001010101100")); // check cell mask
Gnss_Synchro gnss_synchro6;
gnss_synchro6.PRN = 10;
gnss_synchro6.System = *gps.c_str();
std::memcpy((void*)gnss_synchro6.Signal, s2.c_str(), 3);
gnss_synchro6.Pseudorange_m = 24000000.0;
std::map pseudoranges3;
pseudoranges3.insert(std::pair(1, gnss_synchro));
pseudoranges3.insert(std::pair(2, gnss_synchro2));
pseudoranges3.insert(std::pair(3, gnss_synchro6));
pseudoranges3.insert(std::pair(4, gnss_synchro4));
pseudoranges3.insert(std::pair(5, gnss_synchro5));
std::string MSM1_3 = rtcm->print_MSM_1(gps_eph,
{},
gal_eph,
obs_time,
pseudoranges3,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
sync_flag,
divergence_free,
more_messages);
std::string MSM1_bin_3 = rtcm->hex_to_bin(MSM1_3);
EXPECT_EQ(0, MSM1_bin_3.substr(size_header + size_msg_length + 169, (Nsat-1) * Nsig).compare("001010111")); // check cell mask
}
TEST(Rtcm_Test, MSM1)
{
auto rtcm = std::make_shared();
Gps_Ephemeris gps_eph = Gps_Ephemeris();
std::map pseudoranges;
Gnss_Synchro gnss_synchro;
Gnss_Synchro gnss_synchro2;
Gnss_Synchro gnss_synchro3;
Gnss_Synchro gnss_synchro4;
gnss_synchro.PRN = 2;
gnss_synchro2.PRN = 4;
gnss_synchro3.PRN = 32;
gnss_synchro4.PRN = 4;
std::string sys = "G";
std::string sig = "1C";
std::string sig2 = "2S";
gnss_synchro.System = *sys.c_str();
gnss_synchro2.System = *sys.c_str();
gnss_synchro3.System = *sys.c_str();
gnss_synchro4.System = *sys.c_str();
std::memcpy((void*)gnss_synchro.Signal, sig.c_str(), 3);
std::memcpy((void*)gnss_synchro2.Signal, sig.c_str(), 3);
std::memcpy((void*)gnss_synchro3.Signal, sig2.c_str(), 3);
std::memcpy((void*)gnss_synchro4.Signal, sig2.c_str(), 3);
gnss_synchro.Pseudorange_m = 20000000.0;
gnss_synchro2.Pseudorange_m = 20001010.0;
gnss_synchro3.Pseudorange_m = 24002020.0;
gnss_synchro4.Pseudorange_m = 20003010.1;
pseudoranges.insert(std::pair(1, gnss_synchro));
pseudoranges.insert(std::pair(2, gnss_synchro2));
pseudoranges.insert(std::pair(3, gnss_synchro3));
pseudoranges.insert(std::pair(4, gnss_synchro4));
unsigned int ref_id = 1234;
unsigned int clock_steering_indicator = 0;
unsigned int external_clock_indicator = 0;
int smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
bool more_messages = false;
double obs_time = 25.0;
gps_eph.i_satellite_PRN = gnss_synchro.PRN;
std::string MSM1 = rtcm->print_MSM_1(gps_eph,
{}, {},
obs_time,
pseudoranges,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
sync_flag,
divergence_free,
more_messages);
EXPECT_EQ(true, rtcm->check_CRC(MSM1));
std::string MSM1_bin = rtcm->hex_to_bin(MSM1);
unsigned int Nsat = 3;
unsigned int Nsig = 2;
unsigned int size_header = 14;
unsigned int size_crc = 24;
unsigned int size_msg_length = 10;
unsigned int upper_bound = 169 + Nsat * 10 + 43 * Nsig;
unsigned int data_size = MSM1_bin.length() - size_header - size_msg_length - size_crc;
EXPECT_EQ(true, upper_bound >= data_size);
EXPECT_EQ(0, MSM1_bin.substr(0, size_header).compare("11010011000000"));
EXPECT_EQ(ref_id, rtcm->bin_to_uint( MSM1_bin.substr(size_header + size_msg_length + 12, 12)));
EXPECT_EQ(0, MSM1_bin.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("101101")); // check cell mask
double meters_to_miliseconds = GPS_C_m_s * 0.001;
unsigned int rough_range_1 = static_cast(std::floor(std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu;
unsigned int rough_range_2 = static_cast(std::floor(std::round(gnss_synchro2.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu;
unsigned int rough_range_4 = static_cast(std::floor(std::round(gnss_synchro3.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu;
unsigned int read_pseudorange_1 = rtcm->bin_to_uint( MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig , 10));
unsigned int read_pseudorange_2 = rtcm->bin_to_uint( MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig + 10, 10));
unsigned int read_pseudorange_4 = rtcm->bin_to_uint( MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig + 20, 10));
EXPECT_EQ(rough_range_1, read_pseudorange_1);
EXPECT_EQ(rough_range_2, read_pseudorange_2);
EXPECT_EQ(rough_range_4, read_pseudorange_4);
int psrng4_s = static_cast(std::round( (gnss_synchro3.Pseudorange_m - std::round(gnss_synchro3.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10)/ meters_to_miliseconds / TWO_N24));
int read_psrng4_s = rtcm->bin_to_int( MSM1_bin.substr(size_header + size_msg_length + 169 + (Nsat * Nsig) + 30 + 15 * 3, 15));
EXPECT_EQ(psrng4_s, read_psrng4_s);
std::map pseudoranges2;
pseudoranges2.insert(std::pair(1, gnss_synchro4));
pseudoranges2.insert(std::pair(2, gnss_synchro3));
pseudoranges2.insert(std::pair(3, gnss_synchro2));
pseudoranges2.insert(std::pair(4, gnss_synchro));
std::string MSM1_2 = rtcm->print_MSM_1(gps_eph,
{}, {},
obs_time,
pseudoranges2,
ref_id,
clock_steering_indicator,
external_clock_indicator,
smooth_int,
sync_flag,
divergence_free,
more_messages);
std::string MSM1_bin2 = rtcm->hex_to_bin(MSM1_2);
int read_psrng4_s_2 = rtcm->bin_to_int( MSM1_bin2.substr(size_header + size_msg_length + 169 + (Nsat * Nsig) + 30 + 15 * 3, 15));
EXPECT_EQ(psrng4_s, read_psrng4_s_2);
}
TEST(Rtcm_Test, InstantiateServer)
{
auto rtcm = std::make_shared();
rtcm->run_server();
std::string msg("Hello");
rtcm->send_message(msg);
std::string test3 = "ff";
std::string test3_bin = rtcm->hex_to_bin(test3);
EXPECT_EQ(0, test3_bin.compare("11111111"));
rtcm->stop_server();
std::string test6 = "0011";
std::string test6_hex = rtcm->bin_to_hex(test6);
EXPECT_EQ(0, test6_hex.compare("3"));
long unsigned int expected1 = 42;
EXPECT_EQ(expected1, rtcm->bin_to_uint("00101010"));
rtcm->run_server();
std::string test4_bin = rtcm->hex_to_bin(test3);
std::string s("Testing");
rtcm->send_message(s);
rtcm->stop_server();
EXPECT_EQ(0, test4_bin.compare("11111111"));
}
TEST(Rtcm_Test, InstantiateClient)
{
auto rtcm = std::make_shared();
rtcm->run_client();
std::string test3 = "ff";
std::string test3_bin = rtcm->hex_to_bin(test3);
EXPECT_EQ(0, test3_bin.compare("11111111"));
rtcm->stop_client();
}