/*! * \file rtklib_pntpos.cc * \brief standard code-based positioning * \authors * * This is a derived work from RTKLIB http://www.rtklib.com/ * The original source code at https://github.com/tomojitakasu/RTKLIB is * released under the BSD 2-clause license with an additional exclusive clause * that does not apply here. This additional clause is reproduced below: * * " The software package includes some companion executive binaries or shared * libraries necessary to execute APs on Windows. These licenses succeed to the * original ones of these software. " * * Neither the executive binaries nor the shared libraries are required by, used * or included in GNSS-SDR. * * ------------------------------------------------------------------------- * Copyright (C) 2007-2013, T. Takasu * Copyright (C) 2017, Javier Arribas * Copyright (C) 2017, Carles Fernandez * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *-----------------------------------------------------------------------------*/ #include "rtklib_pntpos.h" /* pseudorange measurement error variance ------------------------------------*/ double varerr(const prcopt_t *opt, double el, int sys) { double fact, varr; fact = sys == SYS_GLO ? EFACT_GLO : (sys == SYS_SBS ? EFACT_SBS : EFACT_GPS); varr = std::pow(opt->err[0], 2.0) * (std::pow(opt->err[1], 2.0) + std::pow(opt->err[2], 2.0) / sin(el)); if (opt->ionoopt == IONOOPT_IFLC) varr *= std::pow(2, 3.0); /* iono-free */ return std::pow(fact, 2.0) * varr; } /* get tgd parameter (m) -----------------------------------------------------*/ double gettgd(int sat, const nav_t *nav) { int i; for (i = 0; i < nav->n; i++) { if (nav->eph[i].sat != sat) continue; return SPEED_OF_LIGHT * nav->eph[i].tgd[0]; } return 0.0; } /* psendorange with code bias correction -------------------------------------*/ double prange(const obsd_t *obs, const nav_t *nav, const double *azel, int iter, const prcopt_t *opt, double *var) { const double *lam = nav->lam[obs->sat - 1]; double PC, P1, P2, P1_P2, P1_C1, P2_C2, gamma; int i = 0, j = 1, sys; *var = 0.0; if (!(sys = satsys(obs->sat, NULL))) { trace(4, "prange: satsys NULL\n"); return 0.0; } /* L1-L2 for GPS/GLO/QZS, L1-L5 for GAL/SBS */ if (NFREQ >= 3 && (sys & (SYS_GAL | SYS_SBS))) j = 2; if (NFREQ<2 || lam[i] == 0.0 || lam[j] == 0.0) { trace(4, "prange: NFREQ<2||lam[i]==0.0||lam[j]==0.0\n"); printf("i: %d j:%d, lam[i]: %f lam[j] %f\n", i, j, lam[i], lam[j]); return 0.0; } /* test snr mask */ if (iter>0) { if (testsnr(0, i, azel[1], obs->SNR[i] * 0.25, &opt->snrmask)) { trace(4, "snr mask: %s sat=%2d el=%.1f snr=%.1f\n", time_str(obs->time, 0), obs->sat, azel[1] * R2D, obs->SNR[i] * 0.25); return 0.0; } if (opt->ionoopt == IONOOPT_IFLC) { if (testsnr(0, j, azel[1], obs->SNR[j] * 0.25, &opt->snrmask)) { trace(4, "prange: testsnr error\n"); return 0.0; } } } gamma = std::pow(lam[j], 2.0) / std::pow(lam[i], 2.0); /* f1^2/f2^2 */ P1 = obs->P[i]; P2 = obs->P[j]; P1_P2 = nav->cbias[obs->sat-1][0]; P1_C1 = nav->cbias[obs->sat-1][1]; P2_C2 = nav->cbias[obs->sat-1][2]; /* if no P1-P2 DCB, use TGD instead */ if (P1_P2 == 0.0 && (sys & (SYS_GPS | SYS_GAL | SYS_QZS))) { P1_P2 = (1.0 - gamma) * gettgd(obs->sat, nav); } if (opt->ionoopt == IONOOPT_IFLC) { /* dual-frequency */ if (P1 == 0.0 || P2 == 0.0) return 0.0; if (obs->code[i] == CODE_L1C) P1 += P1_C1; /* C1->P1 */ if (obs->code[j] == CODE_L2C) P2 += P2_C2; /* C2->P2 */ /* iono-free combination */ PC = (gamma * P1 - P2) / (gamma - 1.0); } else { /* single-frequency */ if (P1 == 0.0) return 0.0; if (obs->code[i] == CODE_L1C) P1 += P1_C1; /* C1->P1 */ PC = P1 - P1_P2 / (1.0 - gamma); } if (opt->sateph == EPHOPT_SBAS) PC -= P1_C1; /* sbas clock based C1 */ *var = std::pow(ERR_CBIAS, 2.0); return PC; } /* ionospheric correction ------------------------------------------------------ * compute ionospheric correction * args : gtime_t time I time * nav_t *nav I navigation data * int sat I satellite number * double *pos I receiver position {lat,lon,h} (rad|m) * double *azel I azimuth/elevation angle {az,el} (rad) * int ionoopt I ionospheric correction option (IONOOPT_???) * double *ion O ionospheric delay (L1) (m) * double *var O ionospheric delay (L1) variance (m^2) * return : status(1:ok,0:error) *-----------------------------------------------------------------------------*/ int ionocorr(gtime_t time, const nav_t *nav, int sat, const double *pos, const double *azel, int ionoopt, double *ion, double *var) { trace(4, "ionocorr: time=%s opt=%d sat=%2d pos=%.3f %.3f azel=%.3f %.3f\n", time_str(time, 3), ionoopt, sat, pos[0]*R2D, pos[1]*R2D, azel[0]*R2D, azel[1]*R2D); /* broadcast model */ if (ionoopt == IONOOPT_BRDC) { *ion = ionmodel(time, nav->ion_gps, pos, azel); *var = std::pow(*ion * ERR_BRDCI, 2.0); return 1; } /* sbas ionosphere model */ if (ionoopt == IONOOPT_SBAS) { return sbsioncorr(time, nav, pos, azel, ion, var); } /* ionex tec model */ if (ionoopt == IONOOPT_TEC) { return iontec(time, nav, pos, azel, 1, ion, var); } /* qzss broadcast model */ if (ionoopt == IONOOPT_QZS && norm(nav->ion_qzs, 8)>0.0) { *ion = ionmodel(time, nav->ion_qzs, pos, azel); *var = std::pow(*ion * ERR_BRDCI, 2.0); return 1; } /* lex ionosphere model */ //if (ionoopt == IONOOPT_LEX) { // return lexioncorr(time, nav, pos, azel, ion, var); //} *ion = 0.0; *var = ionoopt == IONOOPT_OFF ? std::pow(ERR_ION, 2.0) : 0.0; return 1; } /* tropospheric correction ----------------------------------------------------- * compute tropospheric correction * args : gtime_t time I time * nav_t *nav I navigation data * double *pos I receiver position {lat,lon,h} (rad|m) * double *azel I azimuth/elevation angle {az,el} (rad) * int tropopt I tropospheric correction option (TROPOPT_???) * double *trp O tropospheric delay (m) * double *var O tropospheric delay variance (m^2) * return : status(1:ok,0:error) *-----------------------------------------------------------------------------*/ int tropcorr(gtime_t time, const nav_t *nav __attribute__((unused)), const double *pos, const double *azel, int tropopt, double *trp, double *var) { trace(4, "tropcorr: time=%s opt=%d pos=%.3f %.3f azel=%.3f %.3f\n", time_str(time, 3), tropopt, pos[0]*R2D, pos[1]*R2D, azel[0]*R2D, azel[1]*R2D); /* saastamoinen model */ if (tropopt == TROPOPT_SAAS || tropopt == TROPOPT_EST || tropopt == TROPOPT_ESTG) { *trp = tropmodel(time, pos, azel, REL_HUMI); *var = std::pow(ERR_SAAS / (sin(azel[1]) + 0.1), 2.0); return 1; } /* sbas troposphere model */ if (tropopt == TROPOPT_SBAS) { *trp = sbstropcorr(time, pos, azel, var); return 1; } /* no correction */ *trp = 0.0; *var = tropopt == TROPOPT_OFF ? std::pow(ERR_TROP, 2.0) : 0.0; return 1; } /* pseudorange residuals -----------------------------------------------------*/ int rescode(int iter, const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const double *x, const prcopt_t *opt, double *v, double *H, double *var, double *azel, int *vsat, double *resp, int *ns) { double r, dion, dtrp, vmeas, vion, vtrp, rr[3], pos[3], dtr, e[3], P, lam_L1; int i, j, nv = 0, sys, mask[4] = {0}; trace(3, "resprng : n=%d\n", n); for (i = 0; i < 3; i++) rr[i] = x[i]; dtr = x[3]; ecef2pos(rr, pos); for (i = *ns = 0; i < n && i < MAXOBS; i++) { vsat[i] = 0; azel[i*2] = azel[1+i*2] = resp[i] = 0.0; if (!(sys = satsys(obs[i].sat, NULL))) continue; /* reject duplicated observation data */ if (i < n - 1 && i < MAXOBS - 1 && obs[i].sat == obs[i+1].sat) { trace(2, "duplicated observation data %s sat=%2d\n", time_str(obs[i].time, 3), obs[i].sat); i++; continue; } /* geometric distance/azimuth/elevation angle */ if ((r = geodist(rs + i * 6, rr, e)) <= 0.0 || satazel(pos, e, azel + i * 2) < opt->elmin) { trace(4, "geodist / satazel error\n"); continue; } /* psudorange with code bias correction */ if ((P = prange(obs+i, nav, azel+i*2, iter, opt, &vmeas)) == 0.0) { trace(4, "prange error\n"); continue; } /* excluded satellite? */ if (satexclude(obs[i].sat, svh[i], opt)) { trace(4, "satexclude error\n"); continue; } /* ionospheric corrections */ if (!ionocorr(obs[i].time, nav, obs[i].sat, pos, azel+i*2, iter>0 ? opt->ionoopt : IONOOPT_BRDC, &dion, &vion)) { trace(4, "ionocorr error\n"); continue; } /* GPS-L1 -> L1/B1 */ if ((lam_L1 = nav->lam[obs[i].sat - 1][0]) > 0.0) { dion *= std::pow(lam_L1 / lam_carr[0], 2.0); } /* tropospheric corrections */ if (!tropcorr(obs[i].time, nav, pos, azel + i*2, iter > 0 ? opt->tropopt : TROPOPT_SAAS, &dtrp, &vtrp)) { trace(4, "tropocorr error\n"); continue; } /* pseudorange residual */ v[nv] = P - (r + dtr - SPEED_OF_LIGHT * dts[i*2] + dion + dtrp); /* design matrix */ for (j = 0; j < NX; j++) H[j + nv * NX] = j < 3 ? - e[j] : (j == 3 ? 1.0 : 0.0); /* time system and receiver bias offset correction */ if (sys == SYS_GLO) {v[nv] -= x[4]; H[4+nv*NX] = 1.0; mask[1] = 1;} else if (sys == SYS_GAL) {v[nv] -= x[5]; H[5+nv*NX] = 1.0; mask[2] = 1;} else if (sys == SYS_BDS) {v[nv] -= x[6]; H[6+nv*NX] = 1.0; mask[3] = 1;} else mask[0] = 1; vsat[i] = 1; resp[i] = v[nv]; (*ns)++; /* error variance */ var[nv++] = varerr(opt, azel[1+i*2], sys) + vare[i] + vmeas + vion + vtrp; trace(4, "sat=%2d azel=%5.1f %4.1f res=%7.3f sig=%5.3f\n", obs[i].sat, azel[i*2] * R2D, azel[1+i*2] * R2D, resp[i], sqrt(var[nv-1])); } /* constraint to avoid rank-deficient */ for (i = 0; i < 4; i++) { if (mask[i]) continue; v[nv] = 0.0; for (j = 0; j < NX; j++) H[j + nv * NX] = j == i + 3 ? 1.0 : 0.0; var[nv++] = 0.01; } return nv; } /* validate solution ---------------------------------------------------------*/ int valsol(const double *azel, const int *vsat, int n, const prcopt_t *opt, const double *v, int nv, int nx, char *msg) { double azels[MAXOBS*2], dop[4], vv; int i, ns; trace(3, "valsol : n=%d nv=%d\n", n, nv); /* chi-square validation of residuals */ vv = dot(v, v, nv); if (nv > nx && vv > chisqr[nv-nx-1]) { sprintf(msg, "chi-square error nv=%d vv=%.1f cs=%.1f", nv, vv, chisqr[nv-nx-1]); return 0; } /* large gdop check */ for (i = ns = 0; i < n; i++) { if (!vsat[i]) continue; azels[ ns*2] = azel[ i*2]; azels[1+ns*2] = azel[1+i*2]; ns++; } dops(ns, azels, opt->elmin, dop); if (dop[0] <= 0.0 || dop[0] > opt->maxgdop) { sprintf(msg, "gdop error nv=%d gdop=%.1f", nv, dop[0]); return 0; } return 1; } /* estimate receiver position ------------------------------------------------*/ int estpos(const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const prcopt_t *opt, sol_t *sol, double *azel, int *vsat, double *resp, char *msg) { double x[NX] = {0}, dx[NX], Q[NX*NX], *v, *H, *var, sig; int i, j, k, info, stat, nv, ns; trace(3, "estpos : n=%d\n", n); v = mat(n + 4, 1); H = mat(NX, n + 4); var = mat(n + 4, 1); for (i = 0; i < 3; i++) x[i] = sol->rr[i]; for (i = 0; i < MAXITR; i++) { /* pseudorange residuals */ nv = rescode(i, obs, n, rs, dts, vare, svh, nav, x, opt, v, H, var, azel, vsat, resp, &ns); if (nv < NX) { sprintf(msg, "lack of valid sats ns=%d", nv); break; } /* weight by variance */ for (j = 0;j < nv; j++) { sig = sqrt(var[j]); v[j] /= sig; for (k = 0; k < NX; k++) H[k + j * NX] /= sig; } /* least square estimation */ if ((info = lsq(H, v, NX, nv, dx, Q))) { sprintf(msg, "lsq error info=%d", info); break; } for (j = 0; j < NX; j++) x[j] += dx[j]; if (norm(dx, NX) < 1e-4) { sol->type = 0; sol->time = timeadd(obs[0].time, -x[3] / SPEED_OF_LIGHT); sol->dtr[0] = x[3] / SPEED_OF_LIGHT; /* receiver clock bias (s) */ sol->dtr[1] = x[4] / SPEED_OF_LIGHT; /* glo-gps time offset (s) */ sol->dtr[2] = x[5] / SPEED_OF_LIGHT; /* gal-gps time offset (s) */ sol->dtr[3] = x[6] / SPEED_OF_LIGHT; /* bds-gps time offset (s) */ for (j = 0; j < 6; j++) sol->rr[j] = j < 3 ? x[j] : 0.0; for (j = 0; j < 3; j++) sol->qr[j] = (float)Q[j + j * NX]; sol->qr[3] = (float)Q[1]; /* cov xy */ sol->qr[4] = (float)Q[2 + NX]; /* cov yz */ sol->qr[5] = (float)Q[2]; /* cov zx */ sol->ns = (unsigned char)ns; sol->age = sol->ratio = 0.0; /* validate solution */ if ((stat = valsol(azel, vsat, n, opt, v, nv, NX, msg))) { sol->stat = opt->sateph == EPHOPT_SBAS ? SOLQ_SBAS : SOLQ_SINGLE; } free(v); free(H); free(var); return stat; } } if (i >= MAXITR) sprintf(msg, "iteration divergent i=%d", i); free(v); free(H); free(var); return 0; } /* raim fde (failure detection and exclution) -------------------------------*/ int raim_fde(const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const prcopt_t *opt, sol_t *sol, double *azel, int *vsat, double *resp, char *msg) { obsd_t *obs_e; sol_t sol_e = {}; char tstr[32], name[16], msg_e[128]; double *rs_e, *dts_e, *vare_e, *azel_e, *resp_e, rms_e, rms = 100.0; int i, j, k, nvsat, stat = 0, *svh_e, *vsat_e, sat = 0; trace(3, "raim_fde: %s n=%2d\n", time_str(obs[0].time, 0), n); if (!(obs_e = (obsd_t *)malloc(sizeof(obsd_t) * n))) return 0; rs_e = mat(6, n); dts_e = mat(2, n); vare_e = mat(1, n); azel_e = zeros(2, n); svh_e = imat(1, n); vsat_e = imat(1, n); resp_e = mat(1, n); for (i = 0; i < n; i++) { /* satellite exclution */ for (j = k = 0; j < n; j++) { if (j == i) continue; obs_e[k] = obs[j]; matcpy(rs_e + 6 * k, rs + 6 * j, 6, 1); matcpy(dts_e + 2 * k, dts + 2 * j, 2, 1); vare_e[k] = vare[j]; svh_e[k++] = svh[j]; } /* estimate receiver position without a satellite */ if (!estpos(obs_e, n-1, rs_e, dts_e, vare_e, svh_e, nav, opt, &sol_e, azel_e, vsat_e, resp_e, msg_e)) { trace(3, "raim_fde: exsat=%2d (%s)\n", obs[i].sat, msg); continue; } for (j = nvsat = 0, rms_e = 0.0; j < n - 1; j++) { if (!vsat_e[j]) continue; rms_e += std::pow(resp_e[j], 2.0); nvsat++; } if (nvsat < 5) { trace(3, "raim_fde: exsat=%2d lack of satellites nvsat=%2d\n", obs[i].sat, nvsat); continue; } rms_e = sqrt(rms_e / nvsat); trace(3, "raim_fde: exsat=%2d rms=%8.3f\n", obs[i].sat, rms_e); if (rms_e > rms) continue; /* save result */ for (j = k = 0; j < n; j++) { if (j == i) continue; matcpy(azel + 2 * j, azel_e + 2 * k, 2, 1); vsat[j] = vsat_e[k]; resp[j] = resp_e[k++]; } stat = 1; *sol = sol_e; sat = obs[i].sat; rms = rms_e; vsat[i] = 0; strcpy(msg, msg_e); } if (stat) { time2str(obs[0].time, tstr, 2); satno2id(sat, name); trace(2, "%s: %s excluded by raim\n", tstr + 11, name); } free(obs_e); free(rs_e); free(dts_e); free(vare_e); free(azel_e); free(svh_e); free(vsat_e); free(resp_e); return stat; } /* doppler residuals ---------------------------------------------------------*/ int resdop(const obsd_t *obs, int n, const double *rs, const double *dts, const nav_t *nav, const double *rr, const double *x, const double *azel, const int *vsat, double *v, double *H) { double lam, rate, pos[3], E[9], a[3], e[3], vs[3], cosel; int i, j, nv = 0; trace(3, "resdop : n=%d\n", n); ecef2pos(rr, pos); xyz2enu(pos, E); for (i = 0; i < n && i < MAXOBS; i++) { lam = nav->lam[obs[i].sat-1][0]; if (obs[i].D[0] == 0.0 || lam == 0.0 || !vsat[i] || norm(rs + 3 + i * 6, 3) <= 0.0) { continue; } /* line-of-sight vector in ecef */ cosel = cos(azel[1+i*2]); a[0] = sin(azel[i*2]) * cosel; a[1] = cos(azel[i*2]) * cosel; a[2] = sin(azel[1+i*2]); matmul("TN", 3, 1, 3, 1.0, E, a, 0.0, e); /* satellite velocity relative to receiver in ecef */ for (j = 0; j < 3; j++) vs[j] = rs[j+3+i*6] - x[j]; /* range rate with earth rotation correction */ rate = dot(vs, e, 3) + DEFAULT_OMEGA_EARTH_DOT / SPEED_OF_LIGHT * (rs[4 + i * 6] * rr[0] + rs[1 + i * 6] * x[0]- rs[3 + i * 6] * rr[1] - rs[i * 6] * x[1]); /* doppler residual */ v[nv] =- lam * obs[i].D[0] - (rate + x[3] - SPEED_OF_LIGHT * dts[1 + i *2]); /* design matrix */ for (j = 0; j < 4; j++) H[j + nv * 4] = j < 3 ? - e[j] : 1.0; nv++; } return nv; } /* estimate receiver velocity ------------------------------------------------*/ void estvel(const obsd_t *obs, int n, const double *rs, const double *dts, const nav_t *nav, const prcopt_t *opt __attribute__((unused)), sol_t *sol, const double *azel, const int *vsat) { double x[4] = {0}, dx[4], Q[16], *v, *H; int i, j, nv; trace(3, "estvel : n=%d\n", n); v = mat(n, 1); H = mat(4, n); for (i = 0; i < MAXITR; i++) { /* doppler residuals */ if ((nv = resdop(obs, n, rs, dts, nav, sol->rr, x, azel, vsat, v, H)) < 4) { break; } /* least square estimation */ if (lsq(H, v, 4, nv, dx, Q)) break; for (j = 0; j < 4; j++) x[j] += dx[j]; if (norm(dx, 4) < 1e-6) { for (i = 0; i < 3; i++) sol->rr[i+3] = x[i]; break; } } free(v); free(H); } /* single-point positioning ---------------------------------------------------- * compute receiver position, velocity, clock bias by single-point positioning * with pseudorange and doppler observables * args : obsd_t *obs I observation data * int n I number of observation data * nav_t *nav I navigation data * prcopt_t *opt I processing options * sol_t *sol IO solution * double *azel IO azimuth/elevation angle (rad) (NULL: no output) * ssat_t *ssat IO satellite status (NULL: no output) * char *msg O error message for error exit * return : status(1:ok,0:error) * notes : assuming sbas-gps, galileo-gps, qzss-gps, compass-gps time offset and * receiver bias are negligible (only involving glonass-gps time offset * and receiver bias) *-----------------------------------------------------------------------------*/ int pntpos(const obsd_t *obs, int n, const nav_t *nav, const prcopt_t *opt, sol_t *sol, double *azel, ssat_t *ssat, char *msg) { // int k = 0; // for (k = 0;kn;k++) // { // printf("NAV[%i]: sat %i, %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f , %f \r\n", // k, // nav->eph[k].sat, // nav->eph[k].A, // nav->eph[k].Adot, // nav->eph[k].M0, // nav->eph[k].OMG0, // nav->eph[k].OMGd, // nav->eph[k].cic, // nav->eph[k].cis, // nav->eph[k].code, // nav->eph[k].crc, // nav->eph[k].crs, // nav->eph[k].cuc, // nav->eph[k].cus, // nav->eph[k].deln, // nav->eph[k].e, // nav->eph[k].f0, // nav->eph[k].f1, // nav->eph[k].f2, // nav->eph[k].fit, // nav->eph[k].flag, // nav->eph[k].i0, // nav->eph[k].idot, // nav->eph[k].iodc, // nav->eph[k].iode, // nav->eph[k].ndot, // nav->eph[k].omg, // nav->eph[k].sat, // nav->eph[k].sva, // nav->eph[k].svh, // nav->eph[k].tgd[0], // nav->eph[k].toc.sec, // nav->eph[k].toe.sec, // nav->eph[k].toes, // nav->eph[k].ttr.sec, // nav->eph[k].week); // } prcopt_t opt_ = *opt; double *rs, *dts, *var, *azel_, *resp; int i, stat, vsat[MAXOBS] = {0}, svh[MAXOBS]; sol->stat = SOLQ_NONE; if (n <= 0) {strcpy(msg, "no observation data"); return 0;} trace(3, "pntpos : tobs=%s n=%d\n", time_str(obs[0].time, 3), n); sol->time = obs[0].time; msg[0] = '\0'; rs = mat(6, n); dts = mat(2, n); var = mat(1, n); azel_ = zeros(2, n); resp = mat(1, n); if (opt_.mode != PMODE_SINGLE) { /* for precise positioning */ #if 0 opt_.sateph = EPHOPT_BRDC; #endif opt_.ionoopt = IONOOPT_BRDC; opt_.tropopt = TROPOPT_SAAS; } /* satellite positons, velocities and clocks */ satposs(sol->time, obs, n, nav, opt_.sateph, rs, dts, var, svh); /* estimate receiver position with pseudorange */ stat = estpos(obs, n, rs, dts, var, svh, nav, &opt_, sol, azel_, vsat, resp, msg); /* raim fde */ if (!stat && n >= 6 && opt->posopt[4]) { stat = raim_fde(obs, n, rs, dts, var, svh, nav, &opt_, sol, azel_, vsat, resp, msg); } /* estimate receiver velocity with doppler */ if (stat) estvel(obs, n, rs, dts, nav, &opt_, sol, azel_, vsat); if (azel) { for (i = 0; i < n * 2; i++) azel[i] = azel_[i]; } if (ssat) { for (i = 0; i < MAXSAT; i++) { ssat[i].vs = 0; ssat[i].azel[0] = ssat[i].azel[1] = 0.0; ssat[i].resp[0] = ssat[i].resc[0] = 0.0; ssat[i].snr[0] = 0; } for (i = 0; i < n; i++) { ssat[obs[i].sat-1].azel[0] = azel_[ i*2]; ssat[obs[i].sat-1].azel[1] = azel_[1+i*2]; ssat[obs[i].sat-1].snr[0] = obs[i].SNR[0]; if (!vsat[i]) continue; ssat[obs[i].sat-1].vs = 1; ssat[obs[i].sat-1].resp[0] = resp[i]; } } free(rs); free(dts); free(var); free(azel_); free(resp); return stat; }