/*! * \file gps_l1_ca_dll_fll_pll_tracking_cc.cc * \brief Implementation of a code DLL + carrier FLL/PLL tracking block * \author Javier Arribas, 2011. jarribas(at)cttc.es * * This file implements the code Delay Locked Loop (DLL) + carrier * Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL) * according to the algorithms described in: * E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and * Applications, Second Edition, Artech House Publishers, 2005. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_dll_fll_pll_tracking_cc.h" #include "gps_sdr_signal_processing.h" #include "GPS_L1_CA.h" #include "tracking_discriminators.h" #include "CN_estimators.h" #include "tracking_FLL_PLL_filter.h" #include "control_message_factory.h" #include "gnss_flowgraph.h" #include #include #include #include #include "math.h" #include #include #include /*! * \todo Include in definition header file */ #define CN0_ESTIMATION_SAMPLES 10 #define MINIMUM_VALID_CN0 25 #define MAXIMUM_LOCK_FAIL_COUNTER 200 using google::LogMessage; gps_l1_ca_dll_fll_pll_tracking_cc_sptr gps_l1_ca_dll_fll_pll_make_tracking_cc(unsigned int satellite, long if_freq, long fs_in, unsigned int vector_length, gr_msg_queue_sptr queue, bool dump, std::string dump_filename, int order, float fll_bw_hz, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) { return gps_l1_ca_dll_fll_pll_tracking_cc_sptr(new Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(satellite, if_freq, fs_in, vector_length, queue, dump, dump_filename, order, fll_bw_hz, pll_bw_hz,dll_bw_hz, early_late_space_chips)); } void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = d_vector_length*2; //set the required available samples in each call } Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(unsigned int satellite, long if_freq, long fs_in, unsigned int vector_length, gr_msg_queue_sptr queue, bool dump, std::string dump_filename, int order, float fll_bw_hz, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) : gr_block ("Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc", gr_make_io_signature (1, 1, sizeof(gr_complex)), gr_make_io_signature(5, 5, sizeof(double))) { //gr_sync_decimator ("gps_l1_ca_dll_pll_tracking_cc", gr_make_io_signature (1, 1, sizeof(gr_complex)), // gr_make_io_signature(3, 3, sizeof(float)),vector_length) { // initialize internal vars d_queue = queue; d_dump = dump; d_satellite = satellite; d_if_freq = if_freq; d_fs_in = fs_in; d_vector_length = vector_length; d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) d_dump_filename = dump_filename; // Initialize tracking variables ========================================== d_carrier_loop_filter.set_params(fll_bw_hz,pll_bw_hz,order); // Get space for a vector with the C/A code replica sampled 1x/chip d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS+2]; // Get space for the resampled early / prompt / late local replicas d_early_code = new gr_complex[d_vector_length*2]; d_prompt_code = new gr_complex[d_vector_length*2]; d_late_code = new gr_complex[d_vector_length*2]; // space for carrier wipeoff LO vector d_carr_sign = new gr_complex[d_vector_length*2]; // sample synchronization d_sample_counter = 0; d_sample_counter_seconds = 0; d_acq_sample_stamp = 0; d_last_seg = 0;// this is for debug output only d_enable_tracking = false; d_current_prn_length_samples = (int)d_vector_length; // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = 5; } void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::start_tracking() { /* * correct the code phase according to the delay between acq and trk */ unsigned long int acq_trk_diff_samples; float acq_trk_diff_seconds; acq_trk_diff_samples = d_sample_counter - d_acq_sample_stamp;//-d_vector_length; acq_trk_diff_seconds = (float)acq_trk_diff_samples / (float)d_fs_in; //doppler effect // Fd=(C/(C+Vr))*F float radial_velocity; radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ; // new chip and prn sequence periods based on acq Doppler float T_chip_mod_seconds; float T_prn_mod_seconds; float T_prn_mod_samples; d_code_freq_hz = radial_velocity * GPS_L1_CA_CODE_RATE_HZ; T_chip_mod_seconds = 1 / d_code_freq_hz; T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; T_prn_mod_samples = T_prn_mod_seconds * (float)d_fs_in; d_next_prn_length_samples = round(T_prn_mod_samples); float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ; float T_prn_true_samples = T_prn_true_seconds * (float)d_fs_in; float T_prn_diff_seconds; T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; float N_prn_diff; N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; float corrected_acq_phase_samples, delay_correction_samples; corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * (float)d_fs_in), T_prn_true_samples); if (corrected_acq_phase_samples < 0) { corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; } delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; // DLL/PLL filter initialization d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); d_FLL_wait = 1; // generate local reference ALWAYS starting at chip 1 (1 sample per chip) code_gen_conplex(&d_ca_code[1], d_satellite, 0); d_ca_code[0] = d_ca_code[(int)GPS_L1_CA_CODE_LENGTH_CHIPS]; d_ca_code[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 1] = d_ca_code[1]; d_carrier_lock_fail_counter = 0; d_Prompt_prev = 0; d_rem_code_phase_samples = 0; d_rem_carr_phase = 0; d_FLL_discriminator_hz = 0; d_rem_code_phase_samples = 0; d_next_rem_code_phase_samples = 0; d_acc_carrier_phase_rad = 0; d_code_phase_samples = d_acq_code_phase_samples; // DEBUG OUTPUT std::cout << "Tracking start on channel " << d_channel << " for satellite ID* " << this->d_satellite << std::endl; DLOG(INFO) << "Start tracking for satellite " << this->d_satellite << " received "; // enable tracking d_pull_in = true; d_enable_tracking = true; std::cout << "PULL-IN Doppler [Hz]= " << d_carrier_doppler_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]= " << d_acq_code_phase_samples << std::endl; } void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_code() { float tcode_chips; float rem_code_phase_chips; float code_phase_step_chips; int associated_chip_index; int code_length_chips = (int)GPS_L1_CA_CODE_LENGTH_CHIPS; code_phase_step_chips = d_code_freq_hz / ((float)d_fs_in); rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_hz / d_fs_in); // unified loop for E, P, L code vectors tcode_chips = -rem_code_phase_chips; for (int i=0; i3) { d_FLL_discriminator_hz = 0; //disconnect the FLL after the initial lock } /*! * DLL and FLL+PLL filter and get current carrier Doppler and code frequency */ carr_nco_hz = d_carrier_loop_filter.get_carrier_error(d_FLL_discriminator_hz, PLL_discriminator_hz, correlation_time_s); d_carrier_doppler_hz = (float)d_if_freq + carr_nco_hz; d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ - (((d_carrier_doppler_hz - (float)d_if_freq) * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ) - code_error_chips; /*! * \todo Improve the lock detection algorithm! */ // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt; d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; d_CN0_SNV_dB_Hz = gps_l1_ca_CN0_SNV(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in); d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); // ###### TRACKING UNLOCK NOTIFICATION ##### int tracking_message; if (d_carrier_lock_test < d_carrier_lock_threshold or d_carrier_lock_test > MINIMUM_VALID_CN0) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; } if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) { std::cout << "Channel " << d_channel << " loss of lock!" << std::endl; tracking_message = 3; //loss of lock d_channel_internal_queue->push(tracking_message); d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } //std::cout<<"d_carrier_lock_fail_counter"<(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions ( std::ifstream::failbit | std::ifstream::badbit ); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); std::cout << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl; } catch (std::ifstream::failure e) { std::cout << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl; } } } } void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::set_acq_sample_stamp(unsigned long int sample_stamp) { d_acq_sample_stamp = sample_stamp; } void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::set_channel_queue(concurrent_queue *channel_internal_queue) { d_channel_internal_queue = channel_internal_queue; }