/*! * \file volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5 * \brief Volk protokernel: performs the carrier wipe-off mixing and the VE, Early, Prompt, Late and VL correlation with 64 bits vectors * \authors * * Volk protokernel that performs the carrier wipe-off mixing and the * VE, Early, Prompt, Late and VL correlation with 64 bits vectors (32 bits the * real part and 32 bits the imaginary part): * - The carrier wipe-off is done by multiplying the input signal by the * carrier (multiplication of 64 bits vectors) It returns the input * signal in base band (BB) * - VE values are calculated by multiplying the input signal in BB by the * VE code (multiplication of 64 bits vectors), accumulating the results * - Early values are calculated by multiplying the input signal in BB by the * early code (multiplication of 64 bits vectors), accumulating the results * - Prompt values are calculated by multiplying the input signal in BB by the * prompt code (multiplication of 64 bits vectors), accumulating the results * - Late values are calculated by multiplying the input signal in BB by the * late code (multiplication of 64 bits vectors), accumulating the results * - VL values are calculated by multiplying the input signal in BB by the * VL code (multiplication of 64 bits vectors), accumulating the results * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #ifndef INCLUDED_gnsssdr_volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_u_H #define INCLUDED_gnsssdr_volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_u_H #include #include #include #include #include /*! * TODO: Code the SSE4 version and benchmark it */ #ifdef LV_HAVE_SSE3 #include /*! \brief Performs the carrier wipe-off mixing and the VE, Early, Prompt, Late and VL correlation \param input The input signal input \param carrier The carrier signal input \param VE_code VE PRN code replica input \param E_code Early PRN code replica input \param P_code Early PRN code replica input \param L_code Early PRN code replica input \param VL_code VL PRN code replica input \param VE_out VE correlation output \param E_out Early correlation output \param P_out Early correlation output \param L_out Early correlation output \param VL_out VL correlation output \param num_points The number of complex values in vectors */ static inline void volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_u_sse3(lv_32fc_t* VE_out, lv_32fc_t* E_out, lv_32fc_t* P_out, lv_32fc_t* L_out, lv_32fc_t* VL_out, const lv_32fc_t* input, const lv_32fc_t* carrier, const lv_32fc_t* VE_code, const lv_32fc_t* E_code, const lv_32fc_t* P_code, const lv_32fc_t* L_code, const lv_32fc_t* VL_code, unsigned int num_points) { unsigned int number = 0; const unsigned int halfPoints = num_points / 2; lv_32fc_t dotProduct_VE; memset(&dotProduct_VE, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_E; memset(&dotProduct_E, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_P; memset(&dotProduct_P, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_L; memset(&dotProduct_L, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_VL; memset(&dotProduct_VL, 0x0, 2*sizeof(float)); // Aux vars __m128 x, y, yl, yh, z, tmp1, tmp2, z_VE, z_E, z_P, z_L, z_VL; __m128 bb_signal_sample, bb_signal_sample_shuffled; z_VE = _mm_setzero_ps(); z_E = _mm_setzero_ps(); z_P = _mm_setzero_ps(); z_L = _mm_setzero_ps(); z_VL = _mm_setzero_ps(); //input and output vectors const lv_32fc_t* _input = input; const lv_32fc_t* _carrier = carrier; const lv_32fc_t* _VE_code = VE_code; const lv_32fc_t* _E_code = E_code; const lv_32fc_t* _P_code = P_code; const lv_32fc_t* _L_code = L_code; const lv_32fc_t* _VL_code = VL_code; for(;number < halfPoints; number++) { // carrier wipe-off (vector point-to-point product) x = _mm_loadu_ps((float*)_input); // Load the ar + ai, br + bi as ar,ai,br,bi y = _mm_loadu_ps((float*)_carrier); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di bb_signal_sample = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di bb_signal_sample_shuffled = _mm_shuffle_ps(bb_signal_sample,bb_signal_sample,0xB1); // Re-arrange bb_signal_sample to be ai,ar,bi,br // correlation VE,E,P,L,VL (5x vector scalar product) // VE y = _mm_loadu_ps((float*)_VE_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_VE = _mm_add_ps(z_VE, z); // Add the complex multiplication results together // Early y = _mm_loadu_ps((float*)_E_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_E = _mm_add_ps(z_E, z); // Add the complex multiplication results together // Prompt y = _mm_loadu_ps((float*)_P_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_P = _mm_add_ps(z_P, z); // Add the complex multiplication results together // Late y = _mm_loadu_ps((float*)_L_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_L = _mm_add_ps(z_L, z); // Add the complex multiplication results together // VL //x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi y = _mm_loadu_ps((float*)_VL_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_VL = _mm_add_ps(z_VL, z); // Add the complex multiplication results together /*pointer increment*/ _carrier += 2; _input += 2; _VE_code += 2; _E_code += 2; _P_code += 2; _L_code +=2; _VL_code +=2; } __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_VE[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_E[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_P[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_L[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_VL[2]; _mm_storeu_ps((float*)dotProductVector_VE,z_VE); // Store the results back into the dot product vector _mm_storeu_ps((float*)dotProductVector_E,z_E); // Store the results back into the dot product vector _mm_storeu_ps((float*)dotProductVector_P,z_P); // Store the results back into the dot product vector _mm_storeu_ps((float*)dotProductVector_L,z_L); // Store the results back into the dot product vector _mm_storeu_ps((float*)dotProductVector_VL,z_VL); // Store the results back into the dot product vector dotProduct_VE += ( dotProductVector_VE[0] + dotProductVector_VE[1] ); dotProduct_E += ( dotProductVector_E[0] + dotProductVector_E[1] ); dotProduct_P += ( dotProductVector_P[0] + dotProductVector_P[1] ); dotProduct_L += ( dotProductVector_L[0] + dotProductVector_L[1] ); dotProduct_VL += ( dotProductVector_VL[0] + dotProductVector_VL[1] ); if((num_points % 2) != 0) { dotProduct_VE += (*_input) * (*_VE_code)*(*_carrier); dotProduct_E += (*_input) * (*_E_code)*(*_carrier); dotProduct_P += (*_input) * (*_P_code)*(*_carrier); dotProduct_L += (*_input) * (*_L_code)*(*_carrier); dotProduct_VL += (*_input) * (*_VL_code)*(*_carrier); } *VE_out = dotProduct_VE; *E_out = dotProduct_E; *P_out = dotProduct_P; *L_out = dotProduct_L; *VL_out = dotProduct_VL; } #endif /* LV_HAVE_SSE3 */ #ifdef LV_HAVE_GENERIC /*! \brief Performs the carrier wipe-off mixing and the VE, Early, Prompt, Late and VL correlation \param input The input signal input \param carrier The carrier signal input \param VE_code VE PRN code replica input \param E_code Early PRN code replica input \param P_code Early PRN code replica input \param L_code Early PRN code replica input \param VL_code VL PRN code replica input \param VE_out VE correlation output \param E_out Early correlation output \param P_out Early correlation output \param L_out Early correlation output \param VL_out VL correlation output \param num_points The number of complex values in vectors */ static inline void volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_generic(lv_32fc_t* VE_out, lv_32fc_t* E_out, lv_32fc_t* P_out, lv_32fc_t* L_out, lv_32fc_t* VL_out, const lv_32fc_t* input, const lv_32fc_t* carrier, const lv_32fc_t* VE_code, const lv_32fc_t* E_code, const lv_32fc_t* P_code, const lv_32fc_t* L_code, const lv_32fc_t* VL_code, unsigned int num_points) { lv_32fc_t bb_signal_sample; bb_signal_sample = lv_cmake(0, 0); *VE_out = 0; *E_out = 0; *P_out = 0; *L_out = 0; *VL_out = 0; // perform Early, Prompt and Late correlation for(int i=0; i < num_points; ++i) { //Perform the carrier wipe-off bb_signal_sample = input[i] * carrier[i]; // Now get early, late, and prompt values for each *VE_out += bb_signal_sample * VE_code[i]; *E_out += bb_signal_sample * E_code[i]; *P_out += bb_signal_sample * P_code[i]; *L_out += bb_signal_sample * L_code[i]; *VL_out += bb_signal_sample * VL_code[i]; } } #endif /* LV_HAVE_GENERIC */ #endif /* INCLUDED_gnsssdr_volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_u_H */ #ifndef INCLUDED_gnsssdr_volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_a_H #define INCLUDED_gnsssdr_volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_a_H #include #include #include #include #include #ifdef LV_HAVE_SSE3 #include /*! \brief Performs the carrier wipe-off mixing and the VE, Early, Prompt, Late and VL correlation \param input The input signal input \param carrier The carrier signal input \param VE_code VE PRN code replica input \param E_code Early PRN code replica input \param P_code Early PRN code replica input \param L_code Early PRN code replica input \param VL_code VL PRN code replica input \param VE_out VE correlation output \param E_out Early correlation output \param P_out Early correlation output \param L_out Early correlation output \param VL_out VL correlation output \param num_points The number of complex values in vectors */ static inline void volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_a_sse3(lv_32fc_t* VE_out, lv_32fc_t* E_out, lv_32fc_t* P_out, lv_32fc_t* L_out, lv_32fc_t* VL_out, const lv_32fc_t* input, const lv_32fc_t* carrier, const lv_32fc_t* VE_code, const lv_32fc_t* E_code, const lv_32fc_t* P_code, const lv_32fc_t* L_code, const lv_32fc_t* VL_code, unsigned int num_points) { unsigned int number = 0; const unsigned int halfPoints = num_points / 2; lv_32fc_t dotProduct_VE; memset(&dotProduct_VE, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_E; memset(&dotProduct_E, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_P; memset(&dotProduct_P, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_L; memset(&dotProduct_L, 0x0, 2*sizeof(float)); lv_32fc_t dotProduct_VL; memset(&dotProduct_VL, 0x0, 2*sizeof(float)); // Aux vars __m128 x, y, yl, yh, z, tmp1, tmp2, z_VE, z_E, z_P, z_L, z_VL; __m128 bb_signal_sample, bb_signal_sample_shuffled; z_VE = _mm_setzero_ps(); z_E = _mm_setzero_ps(); z_P = _mm_setzero_ps(); z_L = _mm_setzero_ps(); z_VL = _mm_setzero_ps(); //input and output vectors const lv_32fc_t* _input = input; const lv_32fc_t* _carrier = carrier; const lv_32fc_t* _VE_code = VE_code; const lv_32fc_t* _E_code = E_code; const lv_32fc_t* _P_code = P_code; const lv_32fc_t* _L_code = L_code; const lv_32fc_t* _VL_code = VL_code; for(;number < halfPoints; number++) { // carrier wipe-off (vector point-to-point product) x = _mm_load_ps((float*)_input); // Load the ar + ai, br + bi as ar,ai,br,bi y = _mm_load_ps((float*)_carrier); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di bb_signal_sample = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di bb_signal_sample_shuffled = _mm_shuffle_ps(bb_signal_sample,bb_signal_sample,0xB1); // Re-arrange bb_signal_sample to be ai,ar,bi,br // correlation VE,E,P,L,VL (5x vector scalar product) // VE y = _mm_load_ps((float*)_VE_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_VE = _mm_add_ps(z_VE, z); // Add the complex multiplication results together // Early y = _mm_load_ps((float*)_E_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_E = _mm_add_ps(z_E, z); // Add the complex multiplication results together // Prompt y = _mm_load_ps((float*)_P_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_P = _mm_add_ps(z_P, z); // Add the complex multiplication results together // Late y = _mm_load_ps((float*)_L_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_L = _mm_add_ps(z_L, z); // Add the complex multiplication results together // VL //x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi y = _mm_load_ps((float*)_VL_code); // Load the cr + ci, dr + di as cr,ci,dr,di yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di tmp1 = _mm_mul_ps(bb_signal_sample,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr tmp2 = _mm_mul_ps(bb_signal_sample_shuffled,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di z_VL = _mm_add_ps(z_VL, z); // Add the complex multiplication results together /*pointer increment*/ _carrier += 2; _input += 2; _VE_code += 2; _E_code += 2; _P_code += 2; _L_code +=2; _VL_code +=2; } __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_VE[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_E[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_P[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_L[2]; __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_VL[2]; _mm_store_ps((float*)dotProductVector_VE,z_VE); // Store the results back into the dot product vector _mm_store_ps((float*)dotProductVector_E,z_E); // Store the results back into the dot product vector _mm_store_ps((float*)dotProductVector_P,z_P); // Store the results back into the dot product vector _mm_store_ps((float*)dotProductVector_L,z_L); // Store the results back into the dot product vector _mm_store_ps((float*)dotProductVector_VL,z_VL); // Store the results back into the dot product vector dotProduct_VE += ( dotProductVector_VE[0] + dotProductVector_VE[1] ); dotProduct_E += ( dotProductVector_E[0] + dotProductVector_E[1] ); dotProduct_P += ( dotProductVector_P[0] + dotProductVector_P[1] ); dotProduct_L += ( dotProductVector_L[0] + dotProductVector_L[1] ); dotProduct_VL += ( dotProductVector_VL[0] + dotProductVector_VL[1] ); if((num_points % 2) != 0) { dotProduct_VE += (*_input) * (*_VE_code)*(*_carrier); dotProduct_E += (*_input) * (*_E_code)*(*_carrier); dotProduct_P += (*_input) * (*_P_code)*(*_carrier); dotProduct_L += (*_input) * (*_L_code)*(*_carrier); dotProduct_VL += (*_input) * (*_VL_code)*(*_carrier); } *VE_out = dotProduct_VE; *E_out = dotProduct_E; *P_out = dotProduct_P; *L_out = dotProduct_L; *VL_out = dotProduct_VL; } #endif /* LV_HAVE_SSE3 */ #ifdef LV_HAVE_GENERIC /*! \brief Performs the carrier wipe-off mixing and the VE, Early, Prompt, Late and VL correlation \param input The input signal input \param carrier The carrier signal input \param VE_code VE PRN code replica input \param E_code Early PRN code replica input \param P_code Early PRN code replica input \param L_code Early PRN code replica input \param VL_code VL PRN code replica input \param VE_out VE correlation output \param E_out Early correlation output \param P_out Early correlation output \param L_out Early correlation output \param VL_out VL correlation output \param num_points The number of complex values in vectors */ static inline void volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_a_generic(lv_32fc_t* VE_out, lv_32fc_t* E_out, lv_32fc_t* P_out, lv_32fc_t* L_out, lv_32fc_t* VL_out, const lv_32fc_t* input, const lv_32fc_t* carrier, const lv_32fc_t* VE_code, const lv_32fc_t* E_code, const lv_32fc_t* P_code, const lv_32fc_t* L_code, const lv_32fc_t* VL_code, unsigned int num_points) { lv_32fc_t bb_signal_sample; bb_signal_sample = lv_cmake(0, 0); *VE_out = 0; *E_out = 0; *P_out = 0; *L_out = 0; *VL_out = 0; // perform Early, Prompt and Late correlation for(int i=0; i < num_points; ++i) { //Perform the carrier wipe-off bb_signal_sample = input[i] * carrier[i]; // Now get early, late, and prompt values for each *VE_out += bb_signal_sample * VE_code[i]; *E_out += bb_signal_sample * E_code[i]; *P_out += bb_signal_sample * P_code[i]; *L_out += bb_signal_sample * L_code[i]; *VL_out += bb_signal_sample * VL_code[i]; } } #endif /* LV_HAVE_GENERIC */ #endif /* INCLUDED_gnsssdr_volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_a_H */