/*! * \file gps_l5i pcps_acquisition.cc * \brief Adapts a PCPS acquisition block to an Acquisition Interface for * GPS L5i signals * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l5i_pcps_acquisition_fpga.h" #include "GPS_L5.h" #include "configuration_interface.h" #include "gnss_sdr_flags.h" #include "gps_l5_signal.h" #include #include #define NUM_PRNs 32 using google::LogMessage; GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga( ConfigurationInterface* configuration, const std::string& role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { //printf("L5 ACQ CLASS CREATED\n"); pcpsconf_fpga_t acq_parameters; configuration_ = configuration; std::string default_item_type = "gr_complex"; std::string default_dump_filename = "./acquisition.mat"; LOG(INFO) << "role " << role; //item_type_ = configuration_->property(role + ".item_type", default_item_type); int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); int64_t fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); acq_parameters.fs_in = fs_in; //if_ = configuration_->property(role + ".if", 0); //acq_parameters.freq = if_; //dump_ = configuration_->property(role + ".dump", false); //acq_parameters.dump = dump_; //blocking_ = configuration_->property(role + ".blocking", true); //acq_parameters.blocking = blocking_; doppler_max_ = configuration->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; acq_parameters.doppler_max = doppler_max_; //acq_parameters.sampled_ms = 1; unsigned int sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1); acq_parameters.sampled_ms = sampled_ms; //printf("L5 ACQ CLASS MID 0\n"); //bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); //acq_parameters.bit_transition_flag = bit_transition_flag_; //use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions //acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; //max_dwells_ = configuration_->property(role + ".max_dwells", 1); //acq_parameters.max_dwells = max_dwells_; //dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); //acq_parameters.dump_filename = dump_filename_; //--- Find number of samples per spreading code ------------------------- unsigned int code_length = static_cast(std::round(static_cast(fs_in) / (GPS_L5i_CODE_RATE_HZ / static_cast(GPS_L5i_CODE_LENGTH_CHIPS)))); acq_parameters.code_length = code_length; // The FPGA can only use FFT lengths that are a power of two. float nbits = ceilf(log2f((float)code_length)); unsigned int nsamples_total = pow(2, nbits); unsigned int vector_length = nsamples_total; unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 1); acq_parameters.select_queue_Fpga = select_queue_Fpga; std::string default_device_name = "/dev/uio0"; std::string device_name = configuration_->property(role + ".devicename", default_device_name); acq_parameters.device_name = device_name; acq_parameters.samples_per_ms = nsamples_total; acq_parameters.samples_per_code = nsamples_total; //printf("L5 ACQ CLASS MID 01\n"); // compute all the GPS L5 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time // a channel is assigned) gr::fft::fft_complex* fft_if = new gr::fft::fft_complex(vector_length, true); // Direct FFT //printf("L5 ACQ CLASS MID 02\n"); std::complex* code = new gr_complex[vector_length]; //printf("L5 ACQ CLASS MID 03\n"); gr_complex* fft_codes_padded = static_cast(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment())); //printf("L5 ACQ CLASS MID 04\n"); d_all_fft_codes_ = new lv_16sc_t[nsamples_total * NUM_PRNs]; // memory containing all the possible fft codes for PRN 0 to 32 //printf("L5 ACQ CLASS MID 1 vector_length = %d\n", vector_length); float max; // temporary maxima search for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++) { //printf("L5 ACQ CLASS processing PRN = %d\n", PRN); gps_l5i_code_gen_complex_sampled(code, PRN, fs_in); //printf("L5 ACQ CLASS processing PRN = %d (cont) \n", PRN); // fill in zero padding for (int s = code_length; s < nsamples_total; s++) { code[s] = std::complex(static_cast(0, 0)); //code[s] = 0; } memcpy(fft_if->get_inbuf(), code, sizeof(gr_complex) * nsamples_total); // copy to FFT buffer fft_if->execute(); // Run the FFT of local code volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values max = 0; // initialize maximum value for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima { if (std::abs(fft_codes_padded[i].real()) > max) { max = std::abs(fft_codes_padded[i].real()); } if (std::abs(fft_codes_padded[i].imag()) > max) { max = std::abs(fft_codes_padded[i].imag()); } } for (unsigned int i = 0; i < nsamples_total; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs { //d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(256*fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)), // static_cast(floor(256*fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max))); //d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(16*floor(fft_codes_padded[i].real() * (pow(2, 11) - 1) / max)), // static_cast(16*floor(fft_codes_padded[i].imag() * (pow(2, 11) - 1) / max))); //d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(fft_codes_padded[i].real() * (pow(2, 15) - 1) / max)), // static_cast(floor(fft_codes_padded[i].imag() * (pow(2, 15) - 1) / max))); d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(fft_codes_padded[i].real() * (pow(2, 15) - 1) / max)), static_cast(floor(fft_codes_padded[i].imag() * (pow(2, 15) - 1) / max))); } } //printf("L5 ACQ CLASS MID 2\n"); //acq_parameters acq_parameters.all_fft_codes = d_all_fft_codes_; // temporary buffers that we can delete delete[] code; delete fft_if; delete[] fft_codes_padded; // vector_length_ = code_length_; // // if (bit_transition_flag_) // { // vector_length_ *= 2; // } // // code_ = new gr_complex[vector_length_]; // // if (item_type_.compare("cshort") == 0) // { // item_size_ = sizeof(lv_16sc_t); // } // else // { // item_size_ = sizeof(gr_complex); // } // acq_parameters.samples_per_code = code_length_; // acq_parameters.samples_per_ms = code_length_; // acq_parameters.it_size = item_size_; //acq_parameters.sampled_ms = 1; // acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); // acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); // acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); // acquisition_fpga_ = pcps_make_acquisition(acq_parameters); // DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")"; acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters); DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")"; // stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); // DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")"; // // if (item_type_.compare("cbyte") == 0) // { // cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); // float_to_complex_ = gr::blocks::float_to_complex::make(); // } channel_ = 0; // threshold_ = 0.0; doppler_step_ = 0; gnss_synchro_ = nullptr; //printf("L5 ACQ CLASS FINISHED\n"); } GpsL5iPcpsAcquisitionFpga::~GpsL5iPcpsAcquisitionFpga() { //delete[] code_; delete[] d_all_fft_codes_; } void GpsL5iPcpsAcquisitionFpga::stop_acquisition() { } void GpsL5iPcpsAcquisitionFpga::set_channel(unsigned int channel) { channel_ = channel; acquisition_fpga_->set_channel(channel_); } void GpsL5iPcpsAcquisitionFpga::set_threshold(float threshold) { // float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0); // // if (pfa == 0.0) // { // pfa = configuration_->property(role_ + ".pfa", 0.0); // } // if (pfa == 0.0) // { // threshold_ = threshold; // } // else // { // threshold_ = calculate_threshold(pfa); // } // DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_; // the .pfa parameter and the threshold calculation is only used for the CFAR algorithm. // We don't use the CFAR algorithm in the FPGA. Therefore the threshold is set as such. DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold; acquisition_fpga_->set_threshold(threshold); } void GpsL5iPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; acquisition_fpga_->set_doppler_max(doppler_max_); } // Be aware that Doppler step should be set to 2/(3T) Hz, where T is the coherent integration time (GPS L2 period is 0.02s) // Doppler bin minimum size= 33 Hz void GpsL5iPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; acquisition_fpga_->set_doppler_step(doppler_step_); } void GpsL5iPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; acquisition_fpga_->set_gnss_synchro(gnss_synchro_); } signed int GpsL5iPcpsAcquisitionFpga::mag() { return acquisition_fpga_->mag(); } void GpsL5iPcpsAcquisitionFpga::init() { acquisition_fpga_->init(); } void GpsL5iPcpsAcquisitionFpga::set_local_code() { acquisition_fpga_->set_local_code(); } void GpsL5iPcpsAcquisitionFpga::reset() { acquisition_fpga_->set_active(true); } void GpsL5iPcpsAcquisitionFpga::set_state(int state) { acquisition_fpga_->set_state(state); } //float GpsL5iPcpsAcquisitionFpga::calculate_threshold(float pfa) //{ // //Calculate the threshold // unsigned int frequency_bins = 0; // for (int doppler = static_cast(-doppler_max_); doppler <= static_cast(doppler_max_); doppler += doppler_step_) // { // frequency_bins++; // } // DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa; // unsigned int ncells = vector_length_ * frequency_bins; // double exponent = 1.0 / static_cast(ncells); // double val = pow(1.0 - pfa, exponent); // double lambda = double(vector_length_); // boost::math::exponential_distribution mydist(lambda); // float threshold = static_cast(quantile(mydist, val)); // // return threshold; //} void GpsL5iPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block) { // if (item_type_.compare("gr_complex") == 0) // { // top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cshort") == 0) // { // top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cbyte") == 0) // { // top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); // top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); // top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); // top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else // { // LOG(WARNING) << item_type_ << " unknown acquisition item type"; // } // nothing to connect } void GpsL5iPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block) { // if (item_type_.compare("gr_complex") == 0) // { // top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cshort") == 0) // { // top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cbyte") == 0) // { // // Since a byte-based acq implementation is not available, // // we just convert cshorts to gr_complex // top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); // top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); // top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); // top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else // { // LOG(WARNING) << item_type_ << " unknown acquisition item type"; // } // nothing to disconnect } gr::basic_block_sptr GpsL5iPcpsAcquisitionFpga::get_left_block() { // if (item_type_.compare("gr_complex") == 0) // { // return stream_to_vector_; // } // else if (item_type_.compare("cshort") == 0) // { // return stream_to_vector_; // } // else if (item_type_.compare("cbyte") == 0) // { // return cbyte_to_float_x2_; // } // else // { // LOG(WARNING) << item_type_ << " unknown acquisition item type"; // return nullptr; // } return nullptr; } gr::basic_block_sptr GpsL5iPcpsAcquisitionFpga::get_right_block() { return acquisition_fpga_; }