% /*! % * \file plot_dump.m % * \brief Read GNSS-SDR Tracking dump binary file and plot some internal % variables % * \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es % * ------------------------------------------------------------------------- % * % * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) % * % * GNSS-SDR is a software defined Global Navigation % * Satellite Systems receiver % * % * This file is part of GNSS-SDR. % * % * GNSS-SDR is free software: you can redistribute it and/or modify % * it under the terms of the GNU General Public License as published by % * the Free Software Foundation, either version 3 of the License, or % * at your option) any later version. % * % * GNSS-SDR is distributed in the hope that it will be useful, % * but WITHOUT ANY WARRANTY; without even the implied warranty of % * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % * GNU General Public License for more details. % * % * You should have received a copy of the GNU General Public License % * along with GNSS-SDR. If not, see . % * % * ------------------------------------------------------------------------- % */ clear all; clc; n_channel = 0; symbol_period = 20e-3; filename = 'track_ch_'; fontsize = 12; addpath('./data') % Path to gnss-sdr dump files (Tracking and PVT) addpath('./geoFunctions') load([filename int2str(n_channel) '.mat']); t = (0 : length(abs_P) - 1) * symbol_period; hf = figure('visible', 'off'); set(hf, 'paperorientation', 'landscape'); subplot(3, 3, [1,3]) plot(t, abs_E, t, abs_P, t, abs_L) xlabel('Time [s]','fontname','Times','fontsize', fontsize) ylabel('Correlation result','fontname','Times','fontsize', fontsize) legend('Early', 'Prompt', 'Late') grid on subplot(3, 3, 7) plot(Prompt_I./1000, Prompt_Q./1000, 'linestyle', 'none', 'marker', '.') xlabel('I','fontname','Times','fontsize', fontsize) ylabel('Q','fontname','Times','fontsize', fontsize) axis equal grid on subplot(3, 3, [4,6]) plot(t, Prompt_I) xlabel('Time [s]','fontname','Times','fontsize', fontsize) ylabel('Navigation data bits','fontname','Times','fontsize', fontsize) grid on fileID = fopen('data/PVT_ls_pvt.dat', 'r'); dinfo = dir('data/PVT_ls_pvt.dat'); filesize = dinfo.bytes; aux = 1; while ne(ftell(fileID), filesize) navsol.RX_time(aux) = fread(fileID, 1, 'double'); navsol.X(aux) = fread(fileID, 1, 'double'); navsol.Y(aux) = fread(fileID, 1, 'double'); navsol.Z(aux) = fread(fileID, 1, 'double'); navsol.user_clock(aux) = fread(fileID, 1, 'double'); navsol.lat(aux) = fread(fileID, 1, 'double'); navsol.long(aux) = fread(fileID, 1, 'double'); navsol.height(aux) = fread(fileID, 1, 'double'); aux = aux + 1; end fclose(fileID); mean_Latitude=mean(navsol.lat); mean_Longitude=mean(navsol.long); mean_h=mean(navsol.height); utmZone = findUtmZone(mean_Latitude,mean_Longitude); [ref_X_cart,ref_Y_cart,ref_Z_cart]=geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5); [mean_utm_X,mean_utm_Y,mean_utm_Z]=cart2utm(ref_X_cart,ref_Y_cart,ref_Z_cart,utmZone); numPoints=length(navsol.X); aux=0; for n=1:numPoints aux=aux+1; [E(aux),N(aux),U(aux)]=cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone); end v_2d=[E;N].'; %2D East Nort position vectors v_3d=[E;N;U].'; %2D East Nort position vectors %% ACCURACY % 2D ------------------- sigma_E_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,1)-mean_utm_X).^2)); sigma_N_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,2)-mean_utm_Y).^2)); sigma_ratio_2d_accuracy=sigma_N_accuracy/sigma_E_accuracy % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% DRMS_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_DRMS_accuracy=2*DRMS_accuracy % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% CEP_accuracy=0.62*sigma_E_accuracy+0.56*sigma_N_accuracy % 3D ------------------- sigma_U_accuracy=sqrt((1/(numPoints-1))*sum((v_3d(:,3)-mean_utm_Z).^2)); % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% SEP_accuracy=0.51*sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% MRSE_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_MRSE_accuracy=2*MRSE_accuracy %% PRECISION % 2D analysis % Simulated X,Y measurements %v1=randn(1000,2); % 2D Mean and Variance mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))]; sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))]; sigma_ratio_2d=sigma_2d(2)/sigma_2d(1) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% DRMS=sqrt(sigma_2d(1)^2+sigma_2d(2)^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_DRMS=2*DRMS % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% CEP=0.62*sigma_2d(1)+0.56*sigma_2d(2) % Mean and Variance mean_3d=[mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))]; sigma_3d=[sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))]; % absolute mean error % 2D error_2D_vec=[mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)]; error_2D_m=norm(error_2D_vec) error_3D_vec=[mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)]; error_3D_m=norm(error_3D_vec) % RMSE 2D RMSE_X=sqrt(mean((v_3d(:,1)-mean_utm_X).^2)) RMSE_Y=sqrt(mean((v_3d(:,2)-mean_utm_Y).^2)) RMSE_Z=sqrt(mean((v_3d(:,3)-mean_utm_Z).^2)) RMSE_2D=sqrt(mean((v_2d(:,1)-mean_utm_X).^2+(v_2d(:,2)-mean_utm_Y).^2)) RMSE_3D=sqrt(mean((v_3d(:,1)-mean_utm_X).^2+(v_3d(:,2)-mean_utm_Y).^2+(v_3d(:,3)-mean_utm_Z).^2)) % SCATTER PLOT subplot(3,3,8) scatter(v_2d(:,1)-mean_2d(1),v_2d(:,2)-mean_2d(2)); hold on; plot(0,0,'k*'); [x,y,z] = cylinder([TWO_DRMS TWO_DRMS],200); plot(x(1,:),y(1,:),'Color',[0 0.6 0]); str = strcat('2DRMS=',num2str(TWO_DRMS), ' m'); text(cosd(65)*TWO_DRMS,sind(65)*TWO_DRMS,str,'Color',[0 0.6 0]); [x,y,z] = cylinder([CEP CEP],200); plot(x(1,:),y(1,:),'r--'); str = strcat('CEP=',num2str(CEP), ' m'); text(cosd(80)*CEP,sind(80)*CEP,str,'Color','r'); grid on axis equal; xlabel('North [m]','fontname','Times','fontsize', fontsize) ylabel('East [m]','fontname','Times','fontsize', fontsize) % 3D analysis % Simulated X,Y,Z measurements % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% SEP=0.51*sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% MRSE=sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_MRSE=2*MRSE % SCATTER PLOT subplot(3,3,9) scatter3(v_3d(:,1)-mean_3d(1),v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3)); hold on; [x,y,z] = sphere(); hSurface=surf(MRSE*x,MRSE*y,MRSE*z); % sphere centered at origin set(hSurface,'facecolor','none','edgecolor',[0 0.6 0],'edgealpha',1,'facealpha',1); %axis equal; xlabel('North [m]','fontname','Times','fontsize', fontsize-2) ylabel('East [m]','fontname','Times','fontsize', fontsize-2) zlabel('Up [m]','fontname','Times','fontsize', fontsize-2) str = strcat('MRSE=',num2str(MRSE), ' m') text(cosd(45)*MRSE,sind(45)*MRSE,20,str,'Color',[0 0.6 0]); a=gca; set(a,'fontsize',fontsize-6) hh=findall(hf,'-property','FontName'); set(hh,'FontName','Times'); print(hf, 'Figure2.eps', '-depsc') close(hf);