/*! * \file dll_pll_veml_tracking_fpga.cc * \brief Implementation of a code DLL + carrier PLL tracking block using an FPGA * \author Marc Majoral, 2018. marc.majoral(at)cttc.es * Antonio Ramos, 2018 antonio.ramosdet(at)gmail.com * Javier Arribas, 2018. jarribas(at)cttc.es * * Code DLL + carrier PLL according to the algorithms described in: * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkhauser, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "dll_pll_veml_tracking_fpga.h" #include "tracking_discriminators.h" #include "lock_detectors.h" #include "control_message_factory.h" #include "MATH_CONSTANTS.h" #include "Galileo_E1.h" #include "Galileo_E5a.h" #include "GPS_L1_CA.h" #include "GPS_L2C.h" #include "gps_l2c_signal.h" #include "GPS_L5.h" #include "gps_l5_signal.h" #include #include #include #include #include #include #include #include #include using google::LogMessage; dll_pll_veml_tracking_fpga_sptr dll_pll_veml_make_tracking_fpga(const Dll_Pll_Conf_Fpga &conf_) { return dll_pll_veml_tracking_fpga_sptr(new dll_pll_veml_tracking_fpga(conf_)); } dll_pll_veml_tracking_fpga::dll_pll_veml_tracking_fpga(const Dll_Pll_Conf_Fpga &conf_) : gr::block("dll_pll_veml_tracking_fpga", gr::io_signature::make(0, 0, sizeof(lv_16sc_t)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { trk_parameters = conf_; // Telemetry bit synchronization message port input this->message_port_register_out(pmt::mp("events")); this->set_relative_rate(1.0 / static_cast(trk_parameters.vector_length)); // Telemetry bit synchronization message port input (mainly for GPS L1 CA) this->message_port_register_in(pmt::mp("preamble_samplestamp")); // initialize internal vars d_veml = false; d_cloop = true; d_synchonizing = false; d_code_chip_rate = 0.0; d_secondary_code_length = 0; d_secondary_code_string = nullptr; signal_type = std::string(trk_parameters.signal); std::map map_signal_pretty_name; map_signal_pretty_name["1C"] = "L1 C/A"; map_signal_pretty_name["1B"] = "E1"; map_signal_pretty_name["1G"] = "L1 C/A"; map_signal_pretty_name["2S"] = "L2C"; map_signal_pretty_name["2G"] = "L2 C/A"; map_signal_pretty_name["5X"] = "E5a"; map_signal_pretty_name["L5"] = "L5"; signal_pretty_name = map_signal_pretty_name[signal_type]; d_prompt_data_shift = nullptr; if (trk_parameters.system == 'G') { systemName = "GPS"; if (signal_type.compare("1C") == 0) { d_signal_carrier_freq = GPS_L1_FREQ_HZ; d_code_period = GPS_L1_CA_CODE_PERIOD; d_code_chip_rate = GPS_L1_CA_CODE_RATE_HZ; d_symbols_per_bit = GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; d_correlation_length_ms = 1; //d_code_samples_per_chip = 1; //d_code_length_chips = static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS); // GPS L1 C/A does not have pilot component nor secondary code d_secondary = false; trk_parameters.track_pilot = false; interchange_iq = false; // set the preamble uint16_t preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE; // preamble bits to sampled symbols d_gps_l1ca_preambles_symbols = static_cast(volk_gnsssdr_malloc(GPS_CA_PREAMBLE_LENGTH_SYMBOLS * sizeof(int32_t), volk_gnsssdr_get_alignment())); int32_t n = 0; for (int32_t i = 0; i < GPS_CA_PREAMBLE_LENGTH_BITS; i++) { for (uint32_t j = 0; j < GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; j++) { if (preambles_bits[i] == 1) { d_gps_l1ca_preambles_symbols[n] = 1; } else { d_gps_l1ca_preambles_symbols[n] = -1; } n++; } } d_symbol_history.resize(GPS_CA_PREAMBLE_LENGTH_SYMBOLS); // Change fixed buffer size d_symbol_history.clear(); // Clear all the elements in the buffer } else if (signal_type.compare("2S") == 0) { d_signal_carrier_freq = GPS_L2_FREQ_HZ; d_code_period = GPS_L2_M_PERIOD; d_code_chip_rate = GPS_L2_M_CODE_RATE_HZ; //d_code_length_chips = static_cast(GPS_L2_M_CODE_LENGTH_CHIPS); d_symbols_per_bit = GPS_L2_SAMPLES_PER_SYMBOL; d_correlation_length_ms = 20; //d_code_samples_per_chip = 1; // GPS L2 does not have pilot component nor secondary code d_secondary = false; trk_parameters.track_pilot = false; interchange_iq = false; } else if (signal_type.compare("L5") == 0) { d_signal_carrier_freq = GPS_L5_FREQ_HZ; d_code_period = GPS_L5i_PERIOD; d_code_chip_rate = GPS_L5i_CODE_RATE_HZ; d_symbols_per_bit = GPS_L5_SAMPLES_PER_SYMBOL; d_correlation_length_ms = 1; //d_code_samples_per_chip = 1; //d_code_length_chips = static_cast(GPS_L5i_CODE_LENGTH_CHIPS); d_secondary = true; // interchange_iq = false; if (trk_parameters.track_pilot) { d_secondary_code_length = static_cast(GPS_L5q_NH_CODE_LENGTH); d_secondary_code_string = const_cast(&GPS_L5q_NH_CODE_STR); signal_pretty_name = signal_pretty_name + "Q"; interchange_iq = true; } else { d_secondary_code_length = static_cast(GPS_L5i_NH_CODE_LENGTH); d_secondary_code_string = const_cast(&GPS_L5i_NH_CODE_STR); signal_pretty_name = signal_pretty_name + "I"; interchange_iq = false; } } else { LOG(WARNING) << "Invalid Signal argument when instantiating tracking blocks"; std::cerr << "Invalid Signal argument when instantiating tracking blocks" << std::endl; d_correlation_length_ms = 1; d_secondary = false; interchange_iq = false; d_signal_carrier_freq = 0.0; d_code_period = 0.0; //d_code_length_chips = 0; //d_code_samples_per_chip = 0; d_symbols_per_bit = 0; } } else if (trk_parameters.system == 'E') { systemName = "Galileo"; if (signal_type.compare("1B") == 0) { d_signal_carrier_freq = Galileo_E1_FREQ_HZ; d_code_period = Galileo_E1_CODE_PERIOD; d_code_chip_rate = Galileo_E1_CODE_CHIP_RATE_HZ; //d_code_length_chips = static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS); d_symbols_per_bit = 1; d_correlation_length_ms = 4; //d_code_samples_per_chip = 2; // CBOC disabled: 2 samples per chip. CBOC enabled: 12 samples per chip d_veml = true; if (trk_parameters.track_pilot) { d_secondary = true; d_secondary_code_length = static_cast(Galileo_E1_C_SECONDARY_CODE_LENGTH); d_secondary_code_string = const_cast(&Galileo_E1_C_SECONDARY_CODE); signal_pretty_name = signal_pretty_name + "C"; } else { d_secondary = false; signal_pretty_name = signal_pretty_name + "B"; } interchange_iq = false; // Note that E1-B and E1-C are in anti-phase, NOT IN QUADRATURE. See Galileo ICD. } else if (signal_type.compare("5X") == 0) { d_signal_carrier_freq = Galileo_E5a_FREQ_HZ; d_code_period = GALILEO_E5a_CODE_PERIOD; d_code_chip_rate = Galileo_E5a_CODE_CHIP_RATE_HZ; d_symbols_per_bit = 20; d_correlation_length_ms = 1; //d_code_samples_per_chip = 1; //d_code_length_chips = static_cast(Galileo_E5a_CODE_LENGTH_CHIPS); d_secondary = true; //interchange_iq = false; if (trk_parameters.track_pilot) { d_secondary_code_length = static_cast(Galileo_E5a_Q_SECONDARY_CODE_LENGTH); signal_pretty_name = signal_pretty_name + "Q"; interchange_iq = true; } else { d_secondary_code_length = static_cast(Galileo_E5a_I_SECONDARY_CODE_LENGTH); d_secondary_code_string = const_cast(&Galileo_E5a_I_SECONDARY_CODE); signal_pretty_name = signal_pretty_name + "I"; interchange_iq = false; } } else { LOG(WARNING) << "Invalid Signal argument when instantiating tracking blocks"; std::cout << "Invalid Signal argument when instantiating tracking blocks" << std::endl; d_correlation_length_ms = 1; d_secondary = false; interchange_iq = false; d_signal_carrier_freq = 0.0; d_code_period = 0.0; //d_code_length_chips = 0; //d_code_samples_per_chip = 0; d_symbols_per_bit = 0; } } else { LOG(WARNING) << "Invalid System argument when instantiating tracking blocks"; std::cerr << "Invalid System argument when instantiating tracking blocks" << std::endl; d_correlation_length_ms = 1; d_secondary = false; interchange_iq = false; d_signal_carrier_freq = 0.0; d_code_period = 0.0; //d_code_length_chips = 0; //d_code_samples_per_chip = 0; d_symbols_per_bit = 0; } T_chip_seconds = 0.0; T_prn_seconds = 0.0; T_prn_samples = 0.0; K_blk_samples = 0.0; // Initialize tracking ========================================== d_code_loop_filter = Tracking_2nd_DLL_filter(static_cast(d_code_period)); d_carrier_loop_filter = Tracking_2nd_PLL_filter(static_cast(d_code_period)); d_carrier_loop_filter.set_PLL_BW(trk_parameters.pll_bw_hz); d_code_loop_filter.set_DLL_BW(trk_parameters.dll_bw_hz); if (d_veml) { // Very-Early, Early, Prompt, Late, Very-Late d_n_correlator_taps = 5; } else { // Early, Prompt, Late d_n_correlator_taps = 3; } d_correlator_outs = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_local_code_shift_chips = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); //std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0)); d_code_samples_per_chip = trk_parameters.code_samples_per_chip; // number of samples per chip // map memory pointers of correlator outputs if (d_veml) { d_Very_Early = &d_correlator_outs[0]; d_Early = &d_correlator_outs[1]; d_Prompt = &d_correlator_outs[2]; d_Late = &d_correlator_outs[3]; d_Very_Late = &d_correlator_outs[4]; // printf("aaaa very early %f\n",-trk_parameters.very_early_late_space_chips); // printf("aaaa early %f\n",-trk_parameters.early_late_space_chips); // printf("aaaa normal %f\n",0); // printf("aaaa late %f\n",trk_parameters.early_late_space_chips); // printf("aaaa very late %f\n",trk_parameters.very_early_late_space_chips); d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[2] = 0.0; d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); d_prompt_data_shift = &d_local_code_shift_chips[2]; } else { d_Very_Early = nullptr; d_Early = &d_correlator_outs[0]; d_Prompt = &d_correlator_outs[1]; d_Late = &d_correlator_outs[2]; d_Very_Late = nullptr; // printf("aaaa early %f\n",-trk_parameters.early_late_space_chips); // printf("aaaa normal %f\n",0); // printf("aaaa late %f\n",trk_parameters.early_late_space_chips); d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_prompt_data_shift = &d_local_code_shift_chips[1]; } if (trk_parameters.extend_correlation_symbols > 1) { d_enable_extended_integration = true; } else { d_enable_extended_integration = false; trk_parameters.extend_correlation_symbols = 1; } // Enable Data component prompt correlator (slave to Pilot prompt) if tracking uses Pilot signal if (trk_parameters.track_pilot) { // Extra correlator for the data component //d_Prompt_Data = static_cast(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment())); //d_Prompt_Data[0] = gr_complex(0.0, 0.0); } else { //d_Prompt_Data = nullptr; } //--- Initializations ---// // Initial code frequency basis of NCO d_code_freq_chips = d_code_chip_rate; // Residual code phase (in chips) d_rem_code_phase_samples = 0.0; // Residual carrier phase d_rem_carr_phase_rad = 0.0; // sample synchronization d_sample_counter = 0ULL; d_acq_sample_stamp = 0ULL; d_absolute_samples_offset = 0ULL; d_current_prn_length_samples = static_cast(trk_parameters.vector_length); d_next_prn_length_samples = d_current_prn_length_samples; d_correlation_length_samples = static_cast(trk_parameters.vector_length); // this one is only for initialisation and does not change its value (MM) // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = new gr_complex[trk_parameters.cn0_samples]; d_carrier_lock_test = 1.0; d_CN0_SNV_dB_Hz = 0.0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = trk_parameters.carrier_lock_th; d_Prompt_Data = static_cast(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment())); //clear_tracking_vars(); d_acquisition_gnss_synchro = nullptr; d_channel = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_acc_carrier_phase_rad = 0.0; d_extend_correlation_symbols_count = 0; d_code_phase_step_chips = 0.0; d_carrier_phase_step_rad = 0.0; d_rem_code_phase_chips = 0.0; d_K_blk_samples = 0.0; d_code_phase_samples = 0.0; d_last_prompt = gr_complex(0.0, 0.0); d_state = 0; // initial state: standby clear_tracking_vars(); //printf("hhhhhhhhhhh d_n_correlator_taps = %d\n", d_n_correlator_taps); // create multicorrelator class std::string device_name = trk_parameters.device_name; uint32_t device_base = trk_parameters.device_base; int32_t *ca_codes = trk_parameters.ca_codes; int32_t *data_codes = trk_parameters.data_codes; //uint32_t code_length = trk_parameters.code_length_chips; d_code_length_chips = trk_parameters.code_length_chips; uint32_t multicorr_type = trk_parameters.multicorr_type; multicorrelator_fpga = std::make_shared(d_n_correlator_taps, device_name, device_base, ca_codes, data_codes, d_code_length_chips, trk_parameters.track_pilot, multicorr_type, d_code_samples_per_chip); multicorrelator_fpga->set_output_vectors(d_correlator_outs, d_Prompt_Data); d_pull_in = 0; } void dll_pll_veml_tracking_fpga::start_tracking() { // correct the code phase according to the delay between acq and trk d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; double acq_trk_diff_seconds = 0; // when using the FPGA we don't use the global sample counter // Doppler effect Fd = (C / (C + Vr)) * F double radial_velocity = (d_signal_carrier_freq + d_acq_carrier_doppler_hz) / d_signal_carrier_freq; // new chip and PRN sequence periods based on acq Doppler d_code_freq_chips = radial_velocity * d_code_chip_rate; d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in; double T_chip_mod_seconds = 1.0 / d_code_freq_chips; double T_prn_mod_seconds = T_chip_mod_seconds * static_cast(d_code_length_chips); double T_prn_mod_samples = T_prn_mod_seconds * trk_parameters.fs_in; //d_current_prn_length_samples = std::round(T_prn_mod_samples); d_current_prn_length_samples = std::floor(T_prn_mod_samples); d_next_prn_length_samples = d_current_prn_length_samples; double T_prn_true_seconds = static_cast(d_code_length_chips) / d_code_chip_rate; double T_prn_true_samples = T_prn_true_seconds * trk_parameters.fs_in; double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; double corrected_acq_phase_samples = std::fmod(d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * trk_parameters.fs_in, T_prn_true_samples); if (corrected_acq_phase_samples < 0.0) { corrected_acq_phase_samples += T_prn_mod_samples; } double delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in; // DLL/PLL filter initialization d_carrier_loop_filter.initialize(); // initialize the carrier filter d_code_loop_filter.initialize(); // initialize the code filter if (systemName.compare("GPS") == 0 and signal_type.compare("1C") == 0) { // nothing to compute : the local codes are pre-computed in the adapter class } else if (systemName.compare("GPS") == 0 and signal_type.compare("2S") == 0) { // nothing to compute : the local codes are pre-computed in the adapter class } else if (systemName.compare("GPS") == 0 and signal_type.compare("L5") == 0) { if (trk_parameters.track_pilot) { d_Prompt_Data[0] = gr_complex(0.0, 0.0); } else { // nothing to compute : the local codes are pre-computed in the adapter class } } else if (systemName.compare("Galileo") == 0 and signal_type.compare("1B") == 0) { if (trk_parameters.track_pilot) { //char pilot_signal[3] = "1C"; d_Prompt_Data[0] = gr_complex(0.0, 0.0); // MISSING _: set_local_code_and_taps for the data correlator } else { // nothing to compute : the local codes are pre-computed in the adapter class } } else if (systemName.compare("Galileo") == 0 and signal_type.compare("5X") == 0) { if (trk_parameters.track_pilot) { d_secondary_code_string = const_cast(&Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1]); for (uint32_t i = 0; i < d_code_length_chips; i++) { // nothing to compute : the local codes are pre-computed in the adapter class } d_Prompt_Data[0] = gr_complex(0.0, 0.0); } else { for (uint32_t i = 0; i < d_code_length_chips; i++) { // nothing to compute : the local codes are pre-computed in the adapter class } } } std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0)); d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0.0; d_rem_carr_phase_rad = 0.0; d_rem_code_phase_chips = 0.0; d_acc_carrier_phase_rad = 0.0; d_cn0_estimation_counter = 0; d_carrier_lock_test = 1.0; d_CN0_SNV_dB_Hz = 0.0; if (d_veml) { d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast(d_code_samples_per_chip); } else { d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast(d_code_samples_per_chip); } d_code_phase_samples = d_acq_code_phase_samples; d_code_loop_filter.set_DLL_BW(trk_parameters.dll_bw_hz); d_carrier_loop_filter.set_PLL_BW(trk_parameters.pll_bw_hz); d_carrier_loop_filter.set_pdi(static_cast(d_code_period)); d_code_loop_filter.set_pdi(static_cast(d_code_period)); // DEBUG OUTPUT std::cout << "Tracking of " << systemName << " " << signal_pretty_name << " signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; d_synchonizing = false; d_cloop = true; d_Prompt_buffer_deque.clear(); d_last_prompt = gr_complex(0.0, 0.0); LOG(INFO) << "PULL-IN Doppler [Hz] = " << d_carrier_doppler_hz << ". Code Phase correction [samples] = " << delay_correction_samples << ". PULL-IN Code Phase [samples] = " << d_acq_code_phase_samples; //multicorrelator_fpga->set_local_code_and_taps(d_code_length_chips, d_local_code_shift_chips, d_acquisition_gnss_synchro->PRN); multicorrelator_fpga->set_local_code_and_taps(d_local_code_shift_chips, d_prompt_data_shift, d_acquisition_gnss_synchro->PRN); d_pull_in = 1; // enable tracking pull-in and d_state at the end to avoid general work from starting pull-in before the start tracking function is finished d_state = 1; } dll_pll_veml_tracking_fpga::~dll_pll_veml_tracking_fpga() { if (signal_type.compare("1C") == 0) { volk_gnsssdr_free(d_gps_l1ca_preambles_symbols); } if (d_dump_file.is_open()) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } if (trk_parameters.dump) { if (d_channel == 0) { std::cout << "Writing .mat files ..."; } save_matfile(); if (d_channel == 0) { std::cout << " done." << std::endl; } } try { volk_gnsssdr_free(d_local_code_shift_chips); volk_gnsssdr_free(d_correlator_outs); volk_gnsssdr_free(d_Prompt_Data); // if (trk_parameters.track_pilot) // { // volk_gnsssdr_free(d_Prompt_Data); // } delete[] d_Prompt_buffer; multicorrelator_fpga->free(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } bool dll_pll_veml_tracking_fpga::acquire_secondary() { // ******* preamble correlation ******** int32_t corr_value = 0; for (uint32_t i = 0; i < d_secondary_code_length; i++) { if (d_Prompt_buffer_deque.at(i).real() < 0.0) // symbols clipping { if (d_secondary_code_string->at(i) == '0') { corr_value++; } else { corr_value--; } } else { if (d_secondary_code_string->at(i) == '0') { corr_value--; } else { corr_value++; } } } // if (abs(corr_value) == d_secondary_code_length) if (abs(corr_value) == static_cast(d_secondary_code_length)) { return true; } else { return false; } } bool dll_pll_veml_tracking_fpga::cn0_and_tracking_lock_status(double coh_integration_time_s) { //printf("kkkkkkkkkkkkk d_cn0_estimation_counter = %d\n", d_cn0_estimation_counter); // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < trk_parameters.cn0_samples) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = d_P_accu; d_cn0_estimation_counter++; return true; } else { //printf("KKKKKKKKKKK checking count fail ...\n"); d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, trk_parameters.cn0_samples, coh_integration_time_s); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, trk_parameters.cn0_samples); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < trk_parameters.cn0_min) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; } if (d_carrier_lock_fail_counter > trk_parameters.max_lock_fail) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock d_carrier_lock_fail_counter = 0; multicorrelator_fpga->unlock_channel(); return false; } else { return true; } } } void dll_pll_veml_tracking_fpga::run_dll_pll() { // ################## PLL ########################################################## // PLL discriminator if (d_cloop) { // Costas loop discriminator, insensitive to 180 deg phase transitions d_carr_error_hz = pll_cloop_two_quadrant_atan(d_P_accu) / PI_2; } else { // Secondary code acquired. No symbols transition should be present in the signal d_carr_error_hz = pll_four_quadrant_atan(d_P_accu) / PI_2; } // Carrier discriminator filter d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(d_carr_error_hz); // New carrier Doppler frequency estimation d_carrier_doppler_hz = d_acq_carrier_doppler_hz + d_carr_error_filt_hz; // New code Doppler frequency estimation d_code_freq_chips = (1.0 + (d_carrier_doppler_hz / d_signal_carrier_freq)) * d_code_chip_rate; // ################## DLL ########################################################## // DLL discriminator if (d_veml) { d_code_error_chips = dll_nc_vemlp_normalized(d_VE_accu, d_E_accu, d_L_accu, d_VL_accu); // [chips/Ti] } else { d_code_error_chips = dll_nc_e_minus_l_normalized(d_E_accu, d_L_accu); // [chips/Ti] } // Code discriminator filter d_code_error_filt_chips = d_code_loop_filter.get_code_nco(d_code_error_chips); // [chips/second] } void dll_pll_veml_tracking_fpga::clear_tracking_vars() { std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0)); //if (trk_parameters.track_pilot) *d_Prompt_Data = gr_complex(0.0, 0.0); if (trk_parameters.track_pilot) d_Prompt_Data[0] = gr_complex(0.0, 0.0); d_carr_error_hz = 0.0; d_carr_error_filt_hz = 0.0; d_code_error_chips = 0.0; d_code_error_filt_chips = 0.0; d_current_symbol = 0; d_Prompt_buffer_deque.clear(); d_last_prompt = gr_complex(0.0, 0.0); } void dll_pll_veml_tracking_fpga::update_tracking_vars() { T_chip_seconds = 1.0 / d_code_freq_chips; T_prn_seconds = T_chip_seconds * static_cast(d_code_length_chips); double code_error_filt_secs = T_prn_seconds * d_code_error_filt_chips * T_chip_seconds; //[seconds] // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### // keep alignment parameters for the next input buffer // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation T_prn_samples = T_prn_seconds * trk_parameters.fs_in; K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * trk_parameters.fs_in; //d_next_prn_length_samples = round(K_blk_samples); d_next_prn_length_samples = static_cast(std::floor(K_blk_samples)); // round to a discrete number of samples //################### PLL COMMANDS ################################################# // carrier phase step (NCO phase increment per sample) [rads/sample] d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in; // remnant carrier phase to prevent overflow in the code NCO d_rem_carr_phase_rad += d_carrier_phase_step_rad * static_cast(d_current_prn_length_samples); d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, PI_2); // carrier phase accumulator d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * static_cast(d_current_prn_length_samples); //################### DLL COMMANDS ################################################# // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in; // remnant code phase [chips] d_rem_code_phase_samples = K_blk_samples - static_cast(d_current_prn_length_samples); // rounding error < 1 sample d_rem_code_phase_chips = d_code_freq_chips * d_rem_code_phase_samples / trk_parameters.fs_in; //printf("lll d_code_freq_chips = %f\n", d_code_freq_chips); //printf("lll d_rem_code_phase_samples = %f\n", d_rem_code_phase_samples); //printf("lll trk_parameters.fs_in = %f\n", trk_parameters.fs_in); //printf("lll d_rem_code_phase_chips = %f\n", d_rem_code_phase_chips); } void dll_pll_veml_tracking_fpga::save_correlation_results() { if (d_secondary) { if (d_secondary_code_string->at(d_current_symbol) == '0') { if (d_veml) { d_VE_accu += *d_Very_Early; d_VL_accu += *d_Very_Late; } d_E_accu += *d_Early; d_P_accu += *d_Prompt; d_L_accu += *d_Late; } else { if (d_veml) { d_VE_accu -= *d_Very_Early; d_VL_accu -= *d_Very_Late; } d_E_accu -= *d_Early; d_P_accu -= *d_Prompt; d_L_accu -= *d_Late; } d_current_symbol++; // secondary code roll-up d_current_symbol %= d_secondary_code_length; } else { if (d_veml) { d_VE_accu += *d_Very_Early; d_VL_accu += *d_Very_Late; } d_E_accu += *d_Early; d_P_accu += *d_Prompt; d_L_accu += *d_Late; d_current_symbol++; d_current_symbol %= d_symbols_per_bit; } // If tracking pilot, disable Costas loop if (trk_parameters.track_pilot) d_cloop = false; else d_cloop = true; } void dll_pll_veml_tracking_fpga::log_data(bool integrating) { if (trk_parameters.dump) { // Dump results to file float prompt_I; float prompt_Q; float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL; float tmp_float; double tmp_double; uint64_t tmp_long_int; if (trk_parameters.track_pilot) { if (interchange_iq) { prompt_I = d_Prompt_Data->imag(); prompt_Q = d_Prompt_Data->real(); } else { prompt_I = d_Prompt_Data->real(); prompt_Q = d_Prompt_Data->imag(); } } else { if (interchange_iq) { prompt_I = d_Prompt->imag(); prompt_Q = d_Prompt->real(); } else { prompt_I = d_Prompt->real(); prompt_Q = d_Prompt->imag(); } } if (d_veml) { tmp_VE = std::abs(d_VE_accu); tmp_VL = std::abs(d_VL_accu); } else { tmp_VE = 0.0; tmp_VL = 0.0; } tmp_E = std::abs(d_E_accu); tmp_P = std::abs(d_P_accu); tmp_L = std::abs(d_L_accu); if (integrating) { //TODO: Improve this solution! // It compensates the amplitude difference while integrating if (d_extend_correlation_symbols_count > 0) { float scale_factor = static_cast(trk_parameters.extend_correlation_symbols) / static_cast(d_extend_correlation_symbols_count); tmp_VE *= scale_factor; tmp_E *= scale_factor; tmp_P *= scale_factor; tmp_L *= scale_factor; tmp_VL *= scale_factor; } } try { // Dump correlators output d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); // PRN start sample stamp tmp_long_int = d_sample_counter + static_cast(d_current_prn_length_samples); d_dump_file.write(reinterpret_cast(&tmp_long_int), sizeof(uint64_t)); // accumulated carrier phase tmp_float = d_acc_carrier_phase_rad; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier and code frequency tmp_float = d_carrier_doppler_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_freq_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // PLL commands tmp_float = d_carr_error_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_carr_error_filt_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // DLL commands tmp_float = d_code_error_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_error_filt_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // CN0 and carrier lock test tmp_float = d_CN0_SNV_dB_Hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_carrier_lock_test; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // AUX vars (for debug purposes) tmp_float = d_rem_code_phase_samples; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_double = static_cast(d_sample_counter + d_current_prn_length_samples); d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); // PRN uint32_t prn_ = d_acquisition_gnss_synchro->PRN; d_dump_file.write(reinterpret_cast(&prn_), sizeof(uint32_t)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } } int32_t dll_pll_veml_tracking_fpga::save_matfile() { // READ DUMP FILE std::ifstream::pos_type size; int32_t number_of_double_vars = 1; int32_t number_of_float_vars = 17; int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars + sizeof(float) * number_of_float_vars + sizeof(uint32_t); std::ifstream dump_file; dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); try { dump_file.open(trk_parameters.dump_filename.c_str(), std::ios::binary | std::ios::ate); } catch (const std::ifstream::failure &e) { std::cerr << "Problem opening dump file:" << e.what() << std::endl; return 1; } // count number of epochs and rewind int64_t num_epoch = 0; if (dump_file.is_open()) { size = dump_file.tellg(); num_epoch = static_cast(size) / static_cast(epoch_size_bytes); dump_file.seekg(0, std::ios::beg); } else { return 1; } float *abs_VE = new float[num_epoch]; float *abs_E = new float[num_epoch]; float *abs_P = new float[num_epoch]; float *abs_L = new float[num_epoch]; float *abs_VL = new float[num_epoch]; float *Prompt_I = new float[num_epoch]; float *Prompt_Q = new float[num_epoch]; uint64_t *PRN_start_sample_count = new uint64_t[num_epoch]; float *acc_carrier_phase_rad = new float[num_epoch]; float *carrier_doppler_hz = new float[num_epoch]; float *code_freq_chips = new float[num_epoch]; float *carr_error_hz = new float[num_epoch]; float *carr_error_filt_hz = new float[num_epoch]; float *code_error_chips = new float[num_epoch]; float *code_error_filt_chips = new float[num_epoch]; float *CN0_SNV_dB_Hz = new float[num_epoch]; float *carrier_lock_test = new float[num_epoch]; float *aux1 = new float[num_epoch]; double *aux2 = new double[num_epoch]; uint32_t *PRN = new uint32_t[num_epoch]; try { if (dump_file.is_open()) { for (int64_t i = 0; i < num_epoch; i++) { dump_file.read(reinterpret_cast(&abs_VE[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_E[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_P[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_L[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_VL[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_I[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_Q[i]), sizeof(float)); dump_file.read(reinterpret_cast(&PRN_start_sample_count[i]), sizeof(uint64_t)); dump_file.read(reinterpret_cast(&acc_carrier_phase_rad[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_doppler_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_freq_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_error_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carr_error_filt_hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_error_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&code_error_filt_chips[i]), sizeof(float)); dump_file.read(reinterpret_cast(&CN0_SNV_dB_Hz[i]), sizeof(float)); dump_file.read(reinterpret_cast(&carrier_lock_test[i]), sizeof(float)); dump_file.read(reinterpret_cast(&aux1[i]), sizeof(float)); dump_file.read(reinterpret_cast(&aux2[i]), sizeof(double)); dump_file.read(reinterpret_cast(&PRN[i]), sizeof(uint32_t)); } } dump_file.close(); } catch (const std::ifstream::failure &e) { std::cerr << "Problem reading dump file:" << e.what() << std::endl; delete[] abs_VE; delete[] abs_E; delete[] abs_P; delete[] abs_L; delete[] abs_VL; delete[] Prompt_I; delete[] Prompt_Q; delete[] PRN_start_sample_count; delete[] acc_carrier_phase_rad; delete[] carrier_doppler_hz; delete[] code_freq_chips; delete[] carr_error_hz; delete[] carr_error_filt_hz; delete[] code_error_chips; delete[] code_error_filt_chips; delete[] CN0_SNV_dB_Hz; delete[] carrier_lock_test; delete[] aux1; delete[] aux2; delete[] PRN; return 1; } // WRITE MAT FILE mat_t *matfp; matvar_t *matvar; std::string filename = trk_parameters.dump_filename; filename.erase(filename.length() - 4, 4); filename.append(".mat"); matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); if (reinterpret_cast(matfp) != NULL) { size_t dims[2] = {1, static_cast(num_epoch)}; matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VE, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VL, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, acc_carrier_phase_rad, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_doppler_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_freq_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_freq_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_error_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_error_filt_hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_error_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_error_filt_chips, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, CN0_SNV_dB_Hz, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_lock_test", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_lock_test, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux1", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, aux1, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); } Mat_Close(matfp); delete[] abs_VE; delete[] abs_E; delete[] abs_P; delete[] abs_L; delete[] abs_VL; delete[] Prompt_I; delete[] Prompt_Q; delete[] PRN_start_sample_count; delete[] acc_carrier_phase_rad; delete[] carrier_doppler_hz; delete[] code_freq_chips; delete[] carr_error_hz; delete[] carr_error_filt_hz; delete[] code_error_chips; delete[] code_error_filt_chips; delete[] CN0_SNV_dB_Hz; delete[] carrier_lock_test; delete[] aux1; delete[] aux2; delete[] PRN; return 0; } void dll_pll_veml_tracking_fpga::set_channel(uint32_t channel) { d_channel = channel; multicorrelator_fpga->set_channel(d_channel); LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (trk_parameters.dump) { if (!d_dump_file.is_open()) { try { trk_parameters.dump_filename.append(boost::lexical_cast(d_channel)); trk_parameters.dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(trk_parameters.dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << trk_parameters.dump_filename.c_str(); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void dll_pll_veml_tracking_fpga::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; } void dll_pll_veml_tracking_fpga::stop_tracking() { gr::thread::scoped_lock l(d_setlock); d_state = 0; } int dll_pll_veml_tracking_fpga::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { gr::thread::scoped_lock l(d_setlock); // Block input data and block output stream pointers Gnss_Synchro **out = reinterpret_cast(&output_items[0]); // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data = Gnss_Synchro(); d_current_prn_length_samples = d_next_prn_length_samples; current_synchro_data = *d_acquisition_gnss_synchro; switch (d_state) { case 0: // Standby - Consume samples at full throttle, do nothing { for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } current_synchro_data.Tracking_sample_counter = 0ULL; // in order to reduce computational workload do not read the sample counter until we start tracking d_sample_counter + d_current_prn_length_samples; current_synchro_data.System = {'G'}; current_synchro_data.correlation_length_ms = 1; break; } case 1: // Standby - Consume samples at full throttle, do nothing { d_pull_in = 0; multicorrelator_fpga->lock_channel(); uint64_t counter_value = multicorrelator_fpga->read_sample_counter(); //printf("333333 counter_value = %llu\n", counter_value); //printf("333333 current_synchro_data.Acq_samplestamp_samples = %d\n", current_synchro_data.Acq_samplestamp_samples); //printf("333333 current_synchro_data.Acq_delay_samples = %f\n", current_synchro_data.Acq_delay_samples); //printf("333333 d_correlation_length_samples = %d\n", d_correlation_length_samples); uint32_t num_frames = ceil((counter_value - current_synchro_data.Acq_samplestamp_samples - current_synchro_data.Acq_delay_samples) / d_correlation_length_samples); //printf("333333 num_frames = %d\n", num_frames); uint64_t absolute_samples_offset = static_cast(current_synchro_data.Acq_delay_samples + current_synchro_data.Acq_samplestamp_samples + num_frames * d_correlation_length_samples); //printf("333333 absolute_samples_offset = %llu\n", absolute_samples_offset); multicorrelator_fpga->set_initial_sample(absolute_samples_offset); d_absolute_samples_offset = absolute_samples_offset; d_sample_counter = absolute_samples_offset; current_synchro_data.Tracking_sample_counter = absolute_samples_offset; d_sample_counter_next = d_sample_counter; d_state = 2; return 0; break; } case 2: { d_sample_counter = d_sample_counter_next; d_sample_counter_next = d_sample_counter + static_cast(d_current_prn_length_samples); // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // perform carrier wipe-off and compute Early, Prompt and Late correlation multicorrelator_fpga->Carrier_wipeoff_multicorrelator_resampler( d_rem_carr_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips * static_cast(d_code_samples_per_chip), d_code_phase_step_chips * static_cast(d_code_samples_per_chip), d_current_prn_length_samples); // Save single correlation step variables if (d_veml) { d_VE_accu = *d_Very_Early; d_VL_accu = *d_Very_Late; } d_E_accu = *d_Early; d_P_accu = *d_Prompt; d_L_accu = *d_Late; if (!cn0_and_tracking_lock_status(d_code_period)) { clear_tracking_vars(); d_state = 0; // loss-of-lock detected } else { bool next_state = false; // Perform DLL/PLL tracking loop computations. Costas Loop enabled run_dll_pll(); update_tracking_vars(); // enable write dump file this cycle (valid DLL/PLL cycle) log_data(false); if (d_secondary) { // ####### SECONDARY CODE LOCK ##### d_Prompt_buffer_deque.push_back(*d_Prompt); if (d_Prompt_buffer_deque.size() == d_secondary_code_length) { next_state = acquire_secondary(); if (next_state) { std::cout << systemName << " " << signal_pretty_name << " secondary code locked in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; } d_Prompt_buffer_deque.pop_front(); } } else if (d_symbols_per_bit > 1) //Signal does not have secondary code. Search a bit transition by sign change { // if (d_synchonizing) // { // if (d_Prompt->real() * d_last_prompt.real() > 0.0) // { // d_current_symbol++; // } // else if (d_current_symbol > d_symbols_per_bit) // { // d_synchonizing = false; // d_current_symbol = 1; // } // else // { // d_current_symbol = 1; // d_last_prompt = *d_Prompt; // } // } // else if (d_last_prompt.real() != 0.0) // { // d_current_symbol++; // if (d_current_symbol == d_symbols_per_bit) next_state = true; // } // else // { // d_last_prompt = *d_Prompt; // d_synchonizing = true; // d_current_symbol = 1; // } // } //=========================================================================================================== //float current_tracking_time_s = static_cast(d_sample_counter - d_acq_sample_stamp) / trk_parameters.fs_in; float current_tracking_time_s = static_cast(d_sample_counter - d_absolute_samples_offset) / trk_parameters.fs_in; if (current_tracking_time_s > 10) { d_symbol_history.push_back(d_Prompt->real()); //******* preamble correlation ******** int32_t corr_value = 0; if ((d_symbol_history.size() == GPS_CA_PREAMBLE_LENGTH_SYMBOLS)) // and (d_make_correlation or !d_flag_frame_sync)) { for (uint32_t i = 0; i < GPS_CA_PREAMBLE_LENGTH_SYMBOLS; i++) { if (d_symbol_history.at(i) < 0) // symbols clipping { corr_value -= d_gps_l1ca_preambles_symbols[i]; } else { corr_value += d_gps_l1ca_preambles_symbols[i]; } } } if (corr_value == GPS_CA_PREAMBLE_LENGTH_SYMBOLS) { //std::cout << "Preamble detected at tracking!" << std::endl; next_state = true; } else { next_state = false; } } else { next_state = false; } } else { next_state = true; } // ########### Output the tracking results to Telemetry block ########## if (interchange_iq) { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).real()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).real()); } } else { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).imag()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); } } current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = d_correlation_length_ms; if (next_state) { // reset extended correlator d_VE_accu = gr_complex(0.0, 0.0); d_E_accu = gr_complex(0.0, 0.0); d_P_accu = gr_complex(0.0, 0.0); d_L_accu = gr_complex(0.0, 0.0); d_VL_accu = gr_complex(0.0, 0.0); d_last_prompt = gr_complex(0.0, 0.0); d_Prompt_buffer_deque.clear(); d_current_symbol = 0; d_synchonizing = false; if (d_enable_extended_integration) { // UPDATE INTEGRATION TIME d_extend_correlation_symbols_count = 0; float new_correlation_time = static_cast(trk_parameters.extend_correlation_symbols) * static_cast(d_code_period); d_carrier_loop_filter.set_pdi(new_correlation_time); d_code_loop_filter.set_pdi(new_correlation_time); d_state = 3; // next state is the extended correlator integrator LOG(INFO) << "Enabled " << trk_parameters.extend_correlation_symbols * static_cast(d_code_period * 1000.0) << " ms extended correlator in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN); std::cout << "Enabled " << trk_parameters.extend_correlation_symbols * static_cast(d_code_period * 1000.0) << " ms extended correlator in channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl; // Set narrow taps delay values [chips] d_code_loop_filter.set_DLL_BW(trk_parameters.dll_bw_narrow_hz); d_carrier_loop_filter.set_PLL_BW(trk_parameters.pll_bw_narrow_hz); if (d_veml) { d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[1] = -trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[3] = trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); } else { d_local_code_shift_chips[0] = -trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); d_local_code_shift_chips[2] = trk_parameters.early_late_space_narrow_chips * static_cast(d_code_samples_per_chip); } } else { d_state = 4; } } } break; } case 3: { d_sample_counter = d_sample_counter_next; d_sample_counter_next = d_sample_counter + static_cast(d_current_prn_length_samples); // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // perform a correlation step multicorrelator_fpga->Carrier_wipeoff_multicorrelator_resampler( d_rem_carr_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips * static_cast(d_code_samples_per_chip), d_code_phase_step_chips * static_cast(d_code_samples_per_chip), d_current_prn_length_samples); update_tracking_vars(); save_correlation_results(); // ########### Output the tracking results to Telemetry block ########## if (interchange_iq) { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).real()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).real()); } } else { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).imag()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); } } current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = d_correlation_length_ms; d_extend_correlation_symbols_count++; if (d_extend_correlation_symbols_count == (trk_parameters.extend_correlation_symbols - 1)) { d_extend_correlation_symbols_count = 0; d_state = 4; } log_data(true); break; } case 4: // narrow tracking { d_sample_counter = d_sample_counter_next; d_sample_counter_next = d_sample_counter + static_cast(d_current_prn_length_samples); // perform a correlation step //do_correlation_step(in); multicorrelator_fpga->Carrier_wipeoff_multicorrelator_resampler( d_rem_carr_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips * static_cast(d_code_samples_per_chip), d_code_phase_step_chips * static_cast(d_code_samples_per_chip), d_current_prn_length_samples); save_correlation_results(); // check lock status if (!cn0_and_tracking_lock_status(d_code_period * static_cast(trk_parameters.extend_correlation_symbols))) { clear_tracking_vars(); d_state = 0; // loss-of-lock detected } else { run_dll_pll(); update_tracking_vars(); // ########### Output the tracking results to Telemetry block ########## if (interchange_iq) { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).real()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).imag()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).real()); } } else { if (trk_parameters.track_pilot) { // Note that data and pilot components are in quadrature. I and Q are interchanged current_synchro_data.Prompt_I = static_cast((*d_Prompt_Data).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Data).imag()); } else { current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); } } current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = d_correlation_length_ms; // enable write dump file this cycle (valid DLL/PLL cycle) log_data(false); // reset extended correlator d_VE_accu = gr_complex(0.0, 0.0); d_E_accu = gr_complex(0.0, 0.0); d_P_accu = gr_complex(0.0, 0.0); d_L_accu = gr_complex(0.0, 0.0); d_VL_accu = gr_complex(0.0, 0.0); if (d_enable_extended_integration) { d_state = 3; // new coherent integration (correlation time extension) cycle } } } } if (current_synchro_data.Flag_valid_symbol_output) { current_synchro_data.fs = static_cast(trk_parameters.fs_in); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_current_prn_length_samples); *out[0] = current_synchro_data; return 1; } return 0; } void dll_pll_veml_tracking_fpga::reset(void) { multicorrelator_fpga->unlock_channel(); }