/*! * \file pcps_acquisition.h * \brief This class implements a Parallel Code Phase Search Acquisition * * Acquisition strategy (Kay Borre book + CFAR threshold). *
    *
  1. Compute the input signal power estimation *
  2. Doppler serial search loop *
  3. Perform the FFT-based circular convolution (parallel time search) *
  4. Record the maximum peak and the associated synchronization parameters *
  5. Compute the test statistics and compare to the threshold *
  6. Declare positive or negative acquisition using a message queue *
* * Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * "A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach", Birkhauser, 2007. pp 81-84 * * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ------------------------------------------------------------------------- */ #ifndef GNSS_SDR_PCPS_ACQUISITION_H #define GNSS_SDR_PCPS_ACQUISITION_H #if ARMA_NO_BOUND_CHECKING #define ARMA_NO_DEBUG 1 #endif #include "acq_conf.h" #include "channel_fsm.h" #include #include #include #include #include // for gr_complex #include // for scoped_lock #include // for gr_vector_const_void_star #include // for lv_16sc_t #include // for volk_gnsssdr::vector #include #include #include #include #include #if HAS_STD_SPAN #include namespace own = std; #else #include namespace own = gsl; #endif #if GNURADIO_USES_STD_POINTERS #else #include #endif class Gnss_Synchro; class pcps_acquisition; #if GNURADIO_USES_STD_POINTERS using pcps_acquisition_sptr = std::shared_ptr; #else using pcps_acquisition_sptr = boost::shared_ptr; #endif pcps_acquisition_sptr pcps_make_acquisition(const Acq_Conf& conf_); /*! * \brief This class implements a Parallel Code Phase Search Acquisition. * * Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver", * Algorithm 1, for a pseudocode description of this implementation. */ class pcps_acquisition : public gr::block { public: ~pcps_acquisition() = default; /*! * \brief Initializes acquisition algorithm and reserves memory. */ void init(); /*! * \brief Set acquisition/tracking common Gnss_Synchro object pointer * to exchange synchronization data between acquisition and tracking blocks. * \param p_gnss_synchro Satellite information shared by the processing blocks. */ inline void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler d_gnss_synchro = p_gnss_synchro; } /*! * \brief Sets local code for PCPS acquisition algorithm. * \param code - Pointer to the PRN code. */ void set_local_code(std::complex* code); /*! * \brief If set to 1, ensures that acquisition starts at the * first available sample. * \param state - int=1 forces start of acquisition */ void set_state(int32_t state); void set_resampler_latency(uint32_t latency_samples); /*! * \brief Returns the maximum peak of grid search. */ inline uint32_t mag() const { return d_mag; } /*! * \brief Starts acquisition algorithm, turning from standby mode to * active mode * \param active - bool that activates/deactivates the block. */ inline void set_active(bool active) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler d_active = active; } /*! * \brief Set acquisition channel unique ID * \param channel - receiver channel. */ inline void set_channel(uint32_t channel) { d_channel = channel; } /*! * \brief Set channel fsm associated to this acquisition instance */ inline void set_channel_fsm(std::weak_ptr channel_fsm) { d_channel_fsm = std::move(channel_fsm); } /*! * \brief Set statistics threshold of PCPS algorithm. * \param threshold - Threshold for signal detection (check \ref Navitec2012, * Algorithm 1, for a definition of this threshold). */ inline void set_threshold(float threshold) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler d_threshold = threshold; } /*! * \brief Set maximum Doppler grid search * \param doppler_max - Maximum Doppler shift considered in the grid search [Hz]. */ inline void set_doppler_max(uint32_t doppler_max) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler d_acq_parameters.doppler_max = doppler_max; } /*! * \brief Set Doppler steps for the grid search * \param doppler_step - Frequency bin of the search grid [Hz]. */ inline void set_doppler_step(uint32_t doppler_step) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler d_doppler_step = doppler_step; } /*! * \brief Set Doppler center frequency for the grid search. It will refresh the Doppler grid. * \param doppler_center - Frequency center of the search grid [Hz]. */ inline void set_doppler_center(int32_t doppler_center) { gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler if (doppler_center != d_doppler_center) { DLOG(INFO) << " Doppler assistance for Channel: " << d_channel << " => Doppler: " << doppler_center << "[Hz]"; d_doppler_center = doppler_center; update_grid_doppler_wipeoffs(); } } /*! * \brief Parallel Code Phase Search Acquisition signal processing. */ int general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items); private: friend pcps_acquisition_sptr pcps_make_acquisition(const Acq_Conf& conf_); explicit pcps_acquisition(const Acq_Conf& conf_); void update_local_carrier(own::span carrier_vector, float freq); void update_grid_doppler_wipeoffs(); void update_grid_doppler_wipeoffs_step2(); void acquisition_core(uint64_t samp_count); void send_negative_acquisition(); void send_positive_acquisition(); void dump_results(int32_t effective_fft_size); bool is_fdma(); bool start(); void calculate_threshold(void); float first_vs_second_peak_statistic(uint32_t& indext, int32_t& doppler, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step); float max_to_input_power_statistic(uint32_t& indext, int32_t& doppler, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step); volk_gnsssdr::vector> d_magnitude_grid; volk_gnsssdr::vector d_tmp_buffer; volk_gnsssdr::vector> d_input_signal; volk_gnsssdr::vector>> d_grid_doppler_wipeoffs; volk_gnsssdr::vector>> d_grid_doppler_wipeoffs_step_two; volk_gnsssdr::vector> d_fft_codes; volk_gnsssdr::vector> d_data_buffer; volk_gnsssdr::vector d_data_buffer_sc; std::unique_ptr d_fft_if; std::unique_ptr d_ifft; std::weak_ptr d_channel_fsm; Acq_Conf d_acq_parameters; Gnss_Synchro* d_gnss_synchro; arma::fmat d_grid; arma::fmat d_narrow_grid; std::string d_dump_filename; int64_t d_dump_number; uint64_t d_sample_counter; float d_threshold; float d_mag; float d_input_power; float d_test_statistics; float d_doppler_center_step_two; int32_t d_state; int32_t d_positive_acq; int32_t d_doppler_center; int32_t d_doppler_bias; uint32_t d_channel; uint32_t d_samplesPerChip; uint32_t d_doppler_step; uint32_t d_num_noncoherent_integrations_counter; uint32_t d_fft_size; uint32_t d_consumed_samples; uint32_t d_num_doppler_bins; uint32_t d_num_doppler_bins_step2; uint32_t d_dump_channel; uint32_t d_buffer_count; bool d_active; bool d_worker_active; bool d_cshort; bool d_step_two; bool d_use_CFAR_algorithm_flag; bool d_dump; }; #endif // GNSS_SDR_PCPS_ACQUISITION_H