/*! * \file gps_l1_ca_pvt_cc.cc * \brief Implementation of a Position Velocity and Time computation block for GPS L1 C/A * \author Javier Arribas, 2011. jarribas(at)cttc.es * ------------------------------------------------------------------------- * * Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_pvt_cc.h" #include #include #include #include #include #include #include #include #include #include #include "control_message_factory.h" #include "boost/date_time/posix_time/posix_time.hpp" #include "gnss_synchro.h" #include "concurrent_map.h" using google::LogMessage; extern concurrent_map global_gps_ephemeris_map; extern concurrent_map global_gps_iono_map; extern concurrent_map global_gps_utc_model_map; gps_l1_ca_pvt_cc_sptr gps_l1_ca_make_pvt_cc(unsigned int nchannels, boost::shared_ptr queue, bool dump, std::string dump_filename, int averaging_depth, bool flag_averaging, int output_rate_ms, int display_rate_ms, bool flag_nmea_tty_port, std::string nmea_dump_filename, std::string nmea_dump_devname) { return gps_l1_ca_pvt_cc_sptr(new gps_l1_ca_pvt_cc(nchannels, queue, dump, dump_filename, averaging_depth, flag_averaging, output_rate_ms, display_rate_ms, flag_nmea_tty_port, nmea_dump_filename, nmea_dump_devname)); } gps_l1_ca_pvt_cc::gps_l1_ca_pvt_cc(unsigned int nchannels, boost::shared_ptr queue, bool dump, std::string dump_filename, int averaging_depth, bool flag_averaging, int output_rate_ms, int display_rate_ms, bool flag_nmea_tty_port, std::string nmea_dump_filename, std::string nmea_dump_devname) : gr::block("gps_l1_ca_pvt_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)), gr::io_signature::make(1, 1, sizeof(gr_complex))) { d_output_rate_ms = output_rate_ms; d_display_rate_ms = display_rate_ms; d_queue = queue; d_dump = dump; d_nchannels = nchannels; d_dump_filename = dump_filename; std::string dump_ls_pvt_filename = dump_filename; //initialize kml_printer std::string kml_dump_filename; kml_dump_filename = d_dump_filename; kml_dump_filename.append(".kml"); d_kml_dump.set_headers(kml_dump_filename); //initialize nmea_printer d_nmea_printer = new Nmea_Printer(nmea_dump_filename, flag_nmea_tty_port, nmea_dump_devname); d_dump_filename.append("_raw.dat"); dump_ls_pvt_filename.append("_ls_pvt.dat"); d_averaging_depth = averaging_depth; d_flag_averaging = flag_averaging; d_ls_pvt = new gps_l1_ca_ls_pvt(nchannels,dump_ls_pvt_filename,d_dump); d_ls_pvt->set_averaging_depth(d_averaging_depth); d_sample_counter = 0; d_last_sample_nav_output = 0; d_rx_time = 0.0; b_rinex_header_writen = false; rp = new Rinex_Printer(); // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit ); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); std::cout << "PVT dump enabled Log file: " << d_dump_filename.c_str() << std::endl; } catch (std::ifstream::failure e) { std::cout << "Exception opening PVT dump file " << e.what() << std::endl; } } } } gps_l1_ca_pvt_cc::~gps_l1_ca_pvt_cc() { d_kml_dump.close_file(); delete d_ls_pvt; delete rp; delete d_nmea_printer; } bool pseudoranges_pairCompare_min( std::pair a, std::pair b) { return (a.second.Pseudorange_m) < (b.second.Pseudorange_m); } int gps_l1_ca_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { d_sample_counter++; std::map gnss_pseudoranges_map; Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; //Get the input pointer for (unsigned int i=0; i(in[i][0].PRN, in[i][0])); // store valid pseudoranges in a map d_rx_time = in[i][0].d_TOW_at_current_symbol; // all the channels have the same RX timestamp (common RX time pseudoranges) } } // ############ 1. READ EPHEMERIS/UTC_MODE/IONO FROM GLOBAL MAPS #### d_ls_pvt->gps_ephemeris_map = global_gps_ephemeris_map.get_map_copy(); if (global_gps_utc_model_map.size()>0) { // UTC MODEL data is shared for all the GPS satellites. Read always at ID=0 global_gps_utc_model_map.read(0,d_ls_pvt->gps_utc_model); } if (global_gps_iono_map.size()>0) { // IONO data is shared for all the GPS satellites. Read always at ID=0 global_gps_iono_map.read(0,d_ls_pvt->gps_iono); } // ############ 2 COMPUTE THE PVT ################################ if (gnss_pseudoranges_map.size() > 0 and d_ls_pvt->gps_ephemeris_map.size() >0) { // compute on the fly PVT solution //mod 8/4/2012 Set the PVT computation rate in this block if ((d_sample_counter % d_output_rate_ms) == 0) { bool pvt_result; pvt_result = d_ls_pvt->get_PVT(gnss_pseudoranges_map, d_rx_time, d_flag_averaging); if (pvt_result==true) { d_kml_dump.print_position(d_ls_pvt, d_flag_averaging); d_nmea_printer->Print_Nmea_Line(d_ls_pvt, d_flag_averaging); if (!b_rinex_header_writen) // & we have utc data in nav message! { std::map::iterator gps_ephemeris_iter; gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin(); if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end()) { rp->rinex_obs_header(rp->obsFile, gps_ephemeris_iter->second,d_rx_time); rp->rinex_nav_header(rp->navFile,d_ls_pvt->gps_iono, d_ls_pvt->gps_utc_model); b_rinex_header_writen = true; // do not write header anymore } } if(b_rinex_header_writen) // Put here another condition to separate annotations (e.g 30 s) { // Limit the RINEX navigation output rate to 1/6 seg // Notice that d_sample_counter period is 1ms (for GPS correlators) if ((d_sample_counter-d_last_sample_nav_output)>=6000) { rp->log_rinex_nav(rp->navFile, d_ls_pvt->gps_ephemeris_map); d_last_sample_nav_output=d_sample_counter; } std::map::iterator gps_ephemeris_iter; gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin(); if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end()) { rp->log_rinex_obs(rp->obsFile, gps_ephemeris_iter->second, d_rx_time, gnss_pseudoranges_map); } } } } // DEBUG MESSAGE: Display position in console output if (((d_sample_counter % d_display_rate_ms) == 0) and d_ls_pvt->b_valid_position == true) { std::cout << "Position at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time) << " is Lat = " << d_ls_pvt->d_latitude_d << " [deg], Long = " << d_ls_pvt->d_longitude_d << " [deg], Height= " << d_ls_pvt->d_height_m << " [m]" << std::endl; std::cout << "Dilution of Precision at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time) << " is HDOP = " << d_ls_pvt->d_HDOP << " and VDOP = " << d_ls_pvt->d_VDOP << std::endl; } // MULTIPLEXED FILE RECORDING - Record results to file if(d_dump == true) { try { double tmp_double; for (unsigned int i=0; i