/*! * \file multiply_test.cc * \brief This file implements tests for the multiplication of long arrays. * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com * Carles Fernandez-Prades, 2012. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include #include DEFINE_int32(size_multiply_test, 100000, "Size of the arrays used for multiply testing"); TEST(Multiply_Test, StandardCDoubleImplementation) { double* input = new double[FLAGS_size_multiply_test]; double* output = new double[FLAGS_size_multiply_test]; memset(input, 0, sizeof(double) * FLAGS_size_multiply_test); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; for(int i = 0; i < FLAGS_size_multiply_test; i++) { output[i] = input[i] * input[i]; } gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << " doubles in standard C finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); double acc = 0; double expected = 0; for(int i = 0; i < FLAGS_size_multiply_test; i++) { acc += output[i]; } ASSERT_EQ(expected, acc); delete [] input; delete [] output; } TEST(Multiply_Test, ArmadilloImplementation) { arma::vec input(FLAGS_size_multiply_test, arma::fill::zeros); arma::vec output(FLAGS_size_multiply_test); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; output = input % input; gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length double Armadillo vectors finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); ASSERT_EQ(0, arma::norm(output)); } TEST(Multiply_Test, StandardCComplexImplementation) { std::complex* input = new std::complex[FLAGS_size_multiply_test]; std::complex* output = new std::complex[FLAGS_size_multiply_test]; memset(input, 0, sizeof(std::complex) * FLAGS_size_multiply_test); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; for(int i = 0; i < FLAGS_size_multiply_test; i++) { output[i] = input[i] * input[i]; } gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << " complex in standard C finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); std::complex expected(0,0); std::complex result(0,0); for(int i = 0; i < FLAGS_size_multiply_test; i++) { result += output[i]; } ASSERT_EQ(expected, result); delete [] input; delete [] output; } TEST(Multiply_Test, C11ComplexImplementation) { const std::vector> input(FLAGS_size_multiply_test); std::vector> output(FLAGS_size_multiply_test); int pos = 0; struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; // Trying a range-based for for (const auto &item : input) { output[pos++] = item * item; } gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << " complex vector (C++11-style) finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); std::complex expected(0,0); auto result = std::inner_product(output.begin(), output.end(), output.begin(), expected); ASSERT_EQ(expected, result); } TEST(Multiply_Test, ArmadilloComplexImplementation) { arma::cx_fvec input(FLAGS_size_multiply_test, arma::fill::zeros); arma::cx_fvec output(FLAGS_size_multiply_test); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; output = input % input; gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length complex float Armadillo vectors finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); ASSERT_EQ(0, arma::norm(output)); } TEST(Multiply_Test, VolkComplexImplementation) { std::complex* input = new std::complex[FLAGS_size_multiply_test]; std::complex* output = new std::complex[FLAGS_size_multiply_test]; memset(input, 0, sizeof(std::complex) * FLAGS_size_multiply_test); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; volk_32fc_x2_multiply_32fc(output, input, input, FLAGS_size_multiply_test); gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length complex float vector using VOLK finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); float* mag = new float [FLAGS_size_multiply_test]; volk_32fc_magnitude_32f(mag, output, FLAGS_size_multiply_test); float* result = new float(0); volk_32f_accumulator_s32f(result, mag, FLAGS_size_multiply_test); // Comparing floating-point numbers is tricky. // Due to round-off errors, it is very unlikely that two floating-points will match exactly. // See http://code.google.com/p/googletest/wiki/AdvancedGuide#Floating-Point_Comparison float expected = 0; ASSERT_FLOAT_EQ(expected, result[0]); delete [] input; delete [] output; delete [] mag; }