/*! * \file rtcm_test.cc * \brief This file implements unit tests for the Rtcm class. * \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ------------------------------------------------------------------------- */ #include "Galileo_E1.h" #include "rtcm.h" #include #include TEST(RtcmTest, HexToBin) { auto rtcm = std::make_shared(); std::string test1 = "2A"; std::string test1_bin = rtcm->hex_to_bin(test1); EXPECT_EQ(0, test1_bin.compare("00101010")); std::string test2 = "FF"; std::string test2_bin = rtcm->hex_to_bin(test2); EXPECT_EQ(0, test2_bin.compare("11111111")); std::string test3 = "ff"; std::string test3_bin = rtcm->hex_to_bin(test3); EXPECT_EQ(0, test3_bin.compare("11111111")); std::string test4 = "100"; std::string test4_bin = rtcm->hex_to_bin(test4); EXPECT_EQ(0, test4_bin.compare("000100000000")); std::string test5 = "1101"; std::string test5_bin = rtcm->hex_to_bin(test5); EXPECT_EQ(0, test5_bin.compare("0001000100000001")); std::string test6 = "3"; std::string test6_bin = rtcm->hex_to_bin(test6); EXPECT_EQ(0, test6_bin.compare("0011")); } TEST(RtcmTest, BinToHex) { auto rtcm = std::make_shared(); std::string test1 = "00101010"; std::string test1_hex = rtcm->bin_to_hex(test1); EXPECT_EQ(0, test1_hex.compare("2A")); std::string test2 = "11111111"; std::string test2_hex = rtcm->bin_to_hex(test2); EXPECT_EQ(0, test2_hex.compare("FF")); std::string test4 = "000100000000"; std::string test4_hex = rtcm->bin_to_hex(test4); EXPECT_EQ(0, test4_hex.compare("100")); std::string test5 = "0001000100000001"; std::string test5_hex = rtcm->bin_to_hex(test5); EXPECT_EQ(0, test5_hex.compare("1101")); std::string test6 = "0011"; std::string test6_hex = rtcm->bin_to_hex(test6); EXPECT_EQ(0, test6_hex.compare("3")); std::string test7 = "11"; std::string test7_hex = rtcm->bin_to_hex(test7); EXPECT_EQ(0, test7_hex.compare("3")); std::string test8 = "1000100000001"; std::string test8_hex = rtcm->bin_to_hex(test8); EXPECT_EQ(0, test8_hex.compare("1101")); } TEST(RtcmTest, HexToInt) { auto rtcm = std::make_shared(); std::string test1 = "2A"; int64_t test1_int = rtcm->hex_to_int(test1); int64_t expected1 = 42; EXPECT_EQ(expected1, test1_int); } TEST(RtcmTest, HexToUint) { auto rtcm = std::make_shared(); uint64_t expected1 = 42; EXPECT_EQ(expected1, rtcm->hex_to_uint(rtcm->bin_to_hex("00101010"))); } TEST(RtcmTest, BinToDouble) { auto rtcm = std::make_shared(); std::bitset<4> test1(5); int64_t test1_int = static_cast(rtcm->bin_to_double(test1.to_string())); int64_t expected1 = 5; EXPECT_EQ(expected1, test1_int); std::bitset<4> test2(-5); EXPECT_DOUBLE_EQ(-5, rtcm->bin_to_double(test2.to_string())); std::bitset<65> test3(-5); EXPECT_DOUBLE_EQ(0, rtcm->bin_to_double(test3.to_string())); } TEST(RtcmTest, BinToUint) { auto rtcm = std::make_shared(); uint32_t expected1 = 42; EXPECT_EQ(expected1, rtcm->bin_to_uint("00101010")); uint32_t expected2 = 214; EXPECT_EQ(expected2, rtcm->bin_to_uint("11010110")); } TEST(RtcmTest, BinToInt) { auto rtcm = std::make_shared(); int32_t expected1 = 42; EXPECT_EQ(expected1, rtcm->bin_to_int("00101010")); int32_t expected2 = -42; EXPECT_EQ(expected2, rtcm->bin_to_int("11010110")); } TEST(RtcmTest, BinToBinaryData) { auto rtcm = std::make_shared(); std::string bin_str("1101101011010110"); std::string data_str = rtcm->bin_to_binary_data(bin_str); std::string test_binary = data_str.substr(0, 1); std::string test_bin = rtcm->binary_data_to_bin(test_binary); std::string test_hex = rtcm->bin_to_hex(test_bin); EXPECT_EQ(0, test_hex.compare("DA")); std::string recovered_str = rtcm->binary_data_to_bin(data_str); EXPECT_EQ(0, recovered_str.compare(bin_str)); } TEST(RtcmTest, CheckCRC) { auto rtcm = std::make_shared(); bool expected_true = true; bool expected_false = false; std::string good_crc = rtcm->bin_to_binary_data(rtcm->hex_to_bin("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B98")); std::string bad_crc = rtcm->bin_to_binary_data(rtcm->hex_to_bin("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B99")); EXPECT_EQ(expected_true, rtcm->check_CRC(good_crc)); EXPECT_EQ(expected_false, rtcm->check_CRC(bad_crc)); EXPECT_EQ(expected_true, rtcm->check_CRC(rtcm->print_MT1005_test())); EXPECT_EQ(expected_true, rtcm->check_CRC(rtcm->print_MT1005_test())); // Run twice to check that CRC has no memory } TEST(RtcmTest, MT1001) { auto rtcm = std::make_shared(); Gps_Ephemeris gps_eph = Gps_Ephemeris(); Gnss_Synchro gnss_synchro; gnss_synchro.PRN = 2; std::string sys = "G"; bool expected_true = true; unsigned short station_id = 1234; std::string sig = "1C"; gnss_synchro.System = *sys.c_str(); std::memcpy(static_cast(gnss_synchro.Signal), sig.c_str(), 3); gnss_synchro.Pseudorange_m = 20000000.0; double obs_time = 25.0; std::map pseudoranges; pseudoranges.insert(std::pair(1, gnss_synchro)); std::string MT1001 = rtcm->print_MT1001(gps_eph, obs_time, pseudoranges, station_id); EXPECT_EQ(expected_true, rtcm->check_CRC(MT1001)); } TEST(RtcmTest, MT1005) { auto rtcm = std::make_shared(); std::string reference_msg = rtcm->print_MT1005_test(); std::string reference_msg2 = rtcm->print_MT1005(2003, 1114104.5999, -4850729.7108, 3975521.4643, true, false, false, false, false, 0); EXPECT_EQ(0, reference_msg.compare(reference_msg2)); unsigned int ref_id; double ecef_x; double ecef_y; double ecef_z; bool gps; bool glonass; bool galileo; bool expected_true = true; bool expected_false = false; rtcm->read_MT1005(reference_msg, ref_id, ecef_x, ecef_y, ecef_z, gps, glonass, galileo); EXPECT_EQ(expected_true, gps); EXPECT_EQ(expected_false, glonass); EXPECT_EQ(expected_false, galileo); EXPECT_EQ(static_cast(2003), ref_id); EXPECT_DOUBLE_EQ(1114104.5999, ecef_x); EXPECT_DOUBLE_EQ(-4850729.7108, ecef_y); EXPECT_DOUBLE_EQ(3975521.4643, ecef_z); gps = false; ecef_x = 0.0; rtcm->read_MT1005(rtcm->bin_to_binary_data(rtcm->hex_to_bin("D300133ED7D30202980EDEEF34B4BD62AC0941986F33360B98")), ref_id, ecef_x, ecef_y, ecef_z, gps, glonass, galileo); EXPECT_EQ(expected_true, gps); EXPECT_EQ(expected_false, glonass); EXPECT_EQ(expected_false, galileo); EXPECT_EQ(static_cast(2003), ref_id); EXPECT_DOUBLE_EQ(1114104.5999, ecef_x); EXPECT_DOUBLE_EQ(-4850729.7108, ecef_y); EXPECT_DOUBLE_EQ(3975521.4643, ecef_z); } TEST(RtcmTest, MT1019) { auto rtcm = std::make_shared(); bool expected_true = true; Gps_Ephemeris gps_eph = Gps_Ephemeris(); Gps_Ephemeris gps_eph_read = Gps_Ephemeris(); gps_eph.i_satellite_PRN = 3; gps_eph.d_IODC = 4; gps_eph.d_e_eccentricity = 2.0 * E_LSB; gps_eph.b_fit_interval_flag = true; std::string tx_msg = rtcm->print_MT1019(gps_eph); EXPECT_EQ(0, rtcm->read_MT1019(tx_msg, gps_eph_read)); EXPECT_EQ(static_cast(3), gps_eph_read.i_satellite_PRN); EXPECT_DOUBLE_EQ(4, gps_eph_read.d_IODC); EXPECT_DOUBLE_EQ(2.0 * E_LSB, gps_eph_read.d_e_eccentricity); EXPECT_EQ(expected_true, gps_eph_read.b_fit_interval_flag); EXPECT_EQ(1, rtcm->read_MT1019(rtcm->bin_to_binary_data(rtcm->hex_to_bin("FFFFFFFFFFF")), gps_eph_read)); } TEST(RtcmTest, MT1020) { auto rtcm = std::make_shared(); // Objects to populate the ephemeris and utc fields Glonass_Gnav_Ephemeris gnav_ephemeris = Glonass_Gnav_Ephemeris(); Glonass_Gnav_Utc_Model gnav_utc_model = Glonass_Gnav_Utc_Model(); // Objects read, used for comparison Glonass_Gnav_Ephemeris gnav_ephemeris_read = Glonass_Gnav_Ephemeris(); Glonass_Gnav_Utc_Model gnav_utc_model_read = Glonass_Gnav_Utc_Model(); // Perform data read and print of special values types gnav_ephemeris.d_P_1 = 15; // Bit distribution per fields gnav_ephemeris.d_t_k = 7560; // Glonass signed values gnav_ephemeris.d_VXn = -0.490900039672852; // Bit distribution per fields dependent on other factors gnav_ephemeris.d_t_b = 8100; // Binary flag representation gnav_ephemeris.d_P_3 = true; std::string tx_msg = rtcm->print_MT1020(gnav_ephemeris, gnav_utc_model); EXPECT_EQ(0, rtcm->read_MT1020(tx_msg, gnav_ephemeris_read, gnav_utc_model_read)); EXPECT_EQ(gnav_ephemeris.d_P_1, gnav_ephemeris_read.d_P_1); EXPECT_TRUE(gnav_ephemeris.d_t_b - gnav_ephemeris_read.d_t_b < FLT_EPSILON); EXPECT_TRUE(gnav_ephemeris.d_VXn - gnav_ephemeris_read.d_VXn < FLT_EPSILON); EXPECT_TRUE(gnav_ephemeris.d_t_k - gnav_ephemeris.d_t_k < FLT_EPSILON); EXPECT_EQ(gnav_ephemeris.d_P_3, gnav_ephemeris_read.d_P_3); EXPECT_EQ(1, rtcm->read_MT1020(rtcm->bin_to_binary_data(rtcm->hex_to_bin("FFFFFFFFFFF")), gnav_ephemeris_read, gnav_utc_model_read)); } TEST(RtcmTest, MT1029) { auto rtcm = std::make_shared(); std::string s_test("UTF-8 проверка wörter"); unsigned int ref_id = 23; double obs_time = 0; Gps_Ephemeris gps_eph = Gps_Ephemeris(); std::string m1029 = rtcm->bin_to_hex(rtcm->binary_data_to_bin(rtcm->print_MT1029(ref_id, gps_eph, obs_time, s_test))); std::string encoded_text = m1029.substr(24, 60); std::string expected_encoded_text("5554462D3820D0BFD180D0BED0B2D0B5D180D0BAD0B02077C3B672746572"); EXPECT_EQ(0, expected_encoded_text.compare(encoded_text)); std::string characters_to_follow = m1029.substr(22, 2); std::string expected_characters_to_follow("1E"); EXPECT_EQ(0, expected_characters_to_follow.compare(characters_to_follow)); } TEST(RtcmTest, MT1045) { auto rtcm = std::make_shared(); bool expected_true = true; Galileo_Ephemeris gal_eph = Galileo_Ephemeris(); Galileo_Ephemeris gal_eph_read = Galileo_Ephemeris(); gal_eph.i_satellite_PRN = 5; gal_eph.OMEGA_dot_3 = 53.0 * OMEGA_DOT_3_LSB; gal_eph.E5a_DVS = true; std::string tx_msg = rtcm->print_MT1045(gal_eph); EXPECT_EQ(0, rtcm->read_MT1045(tx_msg, gal_eph_read)); EXPECT_EQ(expected_true, gal_eph_read.E5a_DVS); EXPECT_DOUBLE_EQ(53.0 * OMEGA_DOT_3_LSB, gal_eph_read.OMEGA_dot_3); EXPECT_EQ(static_cast(5), gal_eph_read.i_satellite_PRN); EXPECT_EQ(1, rtcm->read_MT1045(rtcm->bin_to_binary_data(rtcm->hex_to_bin("FFFFFFFFFFF")), gal_eph_read)); } TEST(RtcmTest, MSMCell) { auto rtcm = std::make_shared(); Gps_Ephemeris gps_eph = Gps_Ephemeris(); Galileo_Ephemeris gal_eph = Galileo_Ephemeris(); // Glonass_Gnav_Ephemeris glo_gnav_eph = Glonass_Gnav_Ephemeris(); std::map pseudoranges; Gnss_Synchro gnss_synchro; Gnss_Synchro gnss_synchro2; Gnss_Synchro gnss_synchro3; Gnss_Synchro gnss_synchro4; Gnss_Synchro gnss_synchro5; Gnss_Synchro gnss_synchro6; gnss_synchro.PRN = 4; gnss_synchro2.PRN = 8; gnss_synchro3.PRN = 32; gnss_synchro4.PRN = 10; gnss_synchro5.PRN = 10; gnss_synchro6.PRN = 10; std::string gps = "G"; std::string gal = "E"; std::string glo = "R"; std::string c1 = "1C"; std::string s2 = "2S"; std::string x5 = "5X"; gnss_synchro.System = *gal.c_str(); gnss_synchro2.System = *gps.c_str(); gnss_synchro3.System = *gps.c_str(); gnss_synchro4.System = *gal.c_str(); gnss_synchro5.System = *gps.c_str(); gnss_synchro6.System = *glo.c_str(); std::memcpy(reinterpret_cast(gnss_synchro.Signal), x5.c_str(), 3); std::memcpy(reinterpret_cast(gnss_synchro2.Signal), s2.c_str(), 3); std::memcpy(reinterpret_cast(gnss_synchro3.Signal), c1.c_str(), 3); std::memcpy(reinterpret_cast(gnss_synchro4.Signal), x5.c_str(), 3); std::memcpy(reinterpret_cast(gnss_synchro5.Signal), c1.c_str(), 3); std::memcpy(reinterpret_cast(gnss_synchro6.Signal), c1.c_str(), 3); gnss_synchro.Pseudorange_m = 20000000.0; gnss_synchro2.Pseudorange_m = 20001010.0; gnss_synchro3.Pseudorange_m = 24002020.0; gnss_synchro4.Pseudorange_m = 20003010.1; gnss_synchro5.Pseudorange_m = 22003010.1; gnss_synchro6.Pseudorange_m = 22003010.1; pseudoranges.insert(std::pair(1, gnss_synchro)); pseudoranges.insert(std::pair(2, gnss_synchro2)); pseudoranges.insert(std::pair(3, gnss_synchro3)); pseudoranges.insert(std::pair(4, gnss_synchro4)); pseudoranges.insert(std::pair(5, gnss_synchro5)); pseudoranges.insert(std::pair(6, gnss_synchro5)); unsigned int ref_id = 1234; unsigned int clock_steering_indicator = 0; unsigned int external_clock_indicator = 0; int smooth_int = 0; bool divergence_free = false; bool more_messages = false; double obs_time = 25.0; gps_eph.i_satellite_PRN = gnss_synchro2.PRN; gal_eph.i_satellite_PRN = gnss_synchro.PRN; // glo_gnav_eph.i_satellite_PRN = gnss_synchro.PRN; std::string MSM1 = rtcm->print_MSM_1(gps_eph, {}, gal_eph, {}, obs_time, pseudoranges, ref_id, clock_steering_indicator, external_clock_indicator, smooth_int, divergence_free, more_messages); std::string MSM1_bin = rtcm->binary_data_to_bin(MSM1); unsigned int Nsat = 4; unsigned int Nsig = 3; unsigned int size_header = 14; unsigned int size_msg_length = 10; EXPECT_EQ(0, MSM1_bin.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("001010101100")); // check cell mask std::map pseudoranges2; pseudoranges2.insert(std::pair(1, gnss_synchro6)); pseudoranges2.insert(std::pair(1, gnss_synchro5)); pseudoranges2.insert(std::pair(2, gnss_synchro4)); pseudoranges2.insert(std::pair(3, gnss_synchro3)); pseudoranges2.insert(std::pair(4, gnss_synchro2)); pseudoranges2.insert(std::pair(5, gnss_synchro)); pseudoranges2.insert(std::pair(6, gnss_synchro)); std::string MSM1_2 = rtcm->print_MSM_1(gps_eph, {}, gal_eph, {}, obs_time, pseudoranges2, ref_id, clock_steering_indicator, external_clock_indicator, smooth_int, divergence_free, more_messages); std::string MSM1_bin_2 = rtcm->binary_data_to_bin(MSM1_2); EXPECT_EQ(0, MSM1_bin_2.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("001010001100")); // check cell mask Gnss_Synchro gnss_synchro7; gnss_synchro7.PRN = 10; gnss_synchro7.System = *gps.c_str(); std::memcpy(reinterpret_cast(gnss_synchro7.Signal), s2.c_str(), 3); gnss_synchro7.Pseudorange_m = 24000000.0; std::map pseudoranges3; pseudoranges3.insert(std::pair(1, gnss_synchro)); pseudoranges3.insert(std::pair(2, gnss_synchro2)); pseudoranges3.insert(std::pair(3, gnss_synchro7)); pseudoranges3.insert(std::pair(4, gnss_synchro4)); pseudoranges3.insert(std::pair(5, gnss_synchro5)); std::string MSM1_3 = rtcm->print_MSM_1(gps_eph, {}, gal_eph, {}, obs_time, pseudoranges3, ref_id, clock_steering_indicator, external_clock_indicator, smooth_int, divergence_free, more_messages); std::string MSM1_bin_3 = rtcm->binary_data_to_bin(MSM1_3); EXPECT_EQ(0, MSM1_bin_3.substr(size_header + size_msg_length + 169, (Nsat - 1) * Nsig).compare("001010111")); // check cell mask } TEST(RtcmTest, MSM1) { auto rtcm = std::make_shared(); bool expected_true = true; Gps_Ephemeris gps_eph = Gps_Ephemeris(); std::map pseudoranges; Gnss_Synchro gnss_synchro; Gnss_Synchro gnss_synchro2; Gnss_Synchro gnss_synchro3; Gnss_Synchro gnss_synchro4; gnss_synchro.PRN = 2; gnss_synchro2.PRN = 4; gnss_synchro3.PRN = 32; gnss_synchro4.PRN = 4; std::string sys = "G"; std::string sig = "1C"; std::string sig2 = "2S"; gnss_synchro.System = *sys.c_str(); gnss_synchro2.System = *sys.c_str(); gnss_synchro3.System = *sys.c_str(); gnss_synchro4.System = *sys.c_str(); std::memcpy(static_cast(gnss_synchro.Signal), sig.c_str(), 3); std::memcpy(static_cast(gnss_synchro2.Signal), sig.c_str(), 3); std::memcpy(static_cast(gnss_synchro3.Signal), sig2.c_str(), 3); std::memcpy(static_cast(gnss_synchro4.Signal), sig2.c_str(), 3); gnss_synchro.Pseudorange_m = 20000000.0; gnss_synchro2.Pseudorange_m = 20001010.0; gnss_synchro3.Pseudorange_m = 24002020.0; gnss_synchro4.Pseudorange_m = 20003010.1; pseudoranges.insert(std::pair(1, gnss_synchro)); pseudoranges.insert(std::pair(2, gnss_synchro2)); pseudoranges.insert(std::pair(3, gnss_synchro3)); pseudoranges.insert(std::pair(4, gnss_synchro4)); unsigned short ref_id = 1234; unsigned int clock_steering_indicator = 0; unsigned int external_clock_indicator = 0; int smooth_int = 0; bool divergence_free = false; bool more_messages = false; double obs_time = 25.0; gps_eph.i_satellite_PRN = gnss_synchro.PRN; std::string MSM1 = rtcm->print_MSM_1(gps_eph, {}, {}, {}, obs_time, pseudoranges, ref_id, clock_steering_indicator, external_clock_indicator, smooth_int, divergence_free, more_messages); EXPECT_EQ(expected_true, rtcm->check_CRC(MSM1)); std::string MSM1_bin = rtcm->binary_data_to_bin(MSM1); unsigned int Nsat = 3; unsigned int Nsig = 2; unsigned int size_header = 14; unsigned int size_crc = 24; unsigned int size_msg_length = 10; unsigned int upper_bound = 169 + Nsat * 10 + 43 * Nsig; unsigned int data_size = MSM1_bin.length() - size_header - size_msg_length - size_crc; EXPECT_EQ(expected_true, upper_bound >= data_size); EXPECT_EQ(0, MSM1_bin.substr(0, size_header).compare("11010011000000")); EXPECT_EQ(ref_id, rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 12, 12))); EXPECT_EQ(0, MSM1_bin.substr(size_header + size_msg_length + 169, Nsat * Nsig).compare("101101")); // check cell mask double meters_to_miliseconds = GPS_C_M_S * 0.001; unsigned int rough_range_1 = static_cast(std::floor(std::round(gnss_synchro.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu; unsigned int rough_range_2 = static_cast(std::floor(std::round(gnss_synchro2.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu; unsigned int rough_range_4 = static_cast(std::floor(std::round(gnss_synchro3.Pseudorange_m / meters_to_miliseconds / TWO_N10)) + 0.5) & 0x3FFu; unsigned int read_pseudorange_1 = rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig, 10)); unsigned int read_pseudorange_2 = rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig + 10, 10)); unsigned int read_pseudorange_4 = rtcm->bin_to_uint(MSM1_bin.substr(size_header + size_msg_length + 169 + Nsat * Nsig + 20, 10)); EXPECT_EQ(rough_range_1, read_pseudorange_1); EXPECT_EQ(rough_range_2, read_pseudorange_2); EXPECT_EQ(rough_range_4, read_pseudorange_4); int psrng4_s = static_cast(std::round((gnss_synchro3.Pseudorange_m - std::round(gnss_synchro3.Pseudorange_m / meters_to_miliseconds / TWO_N10) * meters_to_miliseconds * TWO_N10) / meters_to_miliseconds / TWO_N24)); int read_psrng4_s = rtcm->bin_to_int(MSM1_bin.substr(size_header + size_msg_length + 169 + (Nsat * Nsig) + 30 + 15 * 3, 15)); EXPECT_EQ(psrng4_s, read_psrng4_s); std::map pseudoranges2; pseudoranges2.insert(std::pair(1, gnss_synchro4)); pseudoranges2.insert(std::pair(2, gnss_synchro3)); pseudoranges2.insert(std::pair(3, gnss_synchro2)); pseudoranges2.insert(std::pair(4, gnss_synchro)); std::string MSM1_2 = rtcm->print_MSM_1(gps_eph, {}, {}, {}, obs_time, pseudoranges2, ref_id, clock_steering_indicator, external_clock_indicator, smooth_int, divergence_free, more_messages); std::string MSM1_bin2 = rtcm->binary_data_to_bin(MSM1_2); int read_psrng4_s_2 = rtcm->bin_to_int(MSM1_bin2.substr(size_header + size_msg_length + 169 + (Nsat * Nsig) + 30 + 15 * 3, 15)); EXPECT_EQ(psrng4_s, read_psrng4_s_2); } TEST(RtcmTest, InstantiateServer) { auto rtcm = std::make_shared(); rtcm->run_server(); std::string msg("Hello"); rtcm->send_message(msg); std::string test3 = "ff"; std::string test3_bin = rtcm->hex_to_bin(test3); EXPECT_EQ(0, test3_bin.compare("11111111")); rtcm->stop_server(); std::string test6 = "0011"; std::string test6_hex = rtcm->bin_to_hex(test6); EXPECT_EQ(0, test6_hex.compare("3")); uint64_t expected1 = 42; EXPECT_EQ(expected1, rtcm->bin_to_uint("00101010")); rtcm->run_server(); std::string test4_bin = rtcm->hex_to_bin(test3); std::string s = rtcm->bin_to_binary_data(test4_bin); rtcm->send_message(s); rtcm->stop_server(); EXPECT_EQ(0, test4_bin.compare("11111111")); } TEST(RtcmTest, InstantiateServerWithoutClosing) { auto rtcm = std::make_shared(); rtcm->run_server(); std::string msg("Hello"); rtcm->send_message(msg); std::string test3 = "ff"; std::string test3_bin = rtcm->hex_to_bin(test3); EXPECT_EQ(0, test3_bin.compare("11111111")); }